



1    **Export fluxes of dissolved inorganic carbon to the Northern Indian Ocean  
2    from the Indian monsoonal rivers**

3

4    Moturi S. Krishna<sup>1</sup>, Rongali Viswanadham<sup>1</sup>, Mamidala H. K. Prasad<sup>1</sup>, Vuravakonda R. Kumari<sup>1</sup>,  
5    Vedula V. S. S. Sarma<sup>1</sup>

6    <sup>1</sup>CSIR-National Institute of Oceanography, Regional Centre, Visakhapatnam, 530017, India

7

8    *Correspondence to:* M. S. Krishna (moturi@nio.org)

9

10   **Abstract.** Rivers are strong source of dissolved inorganic carbon (DIC) to the adjacent coastal  
11   waters. In order to identify the major sources of DIC in the Indian monsoonal estuaries and their  
12   export flux to the north Indian Ocean, 27 major and medium estuaries along the Indian coast  
13   were sampled during discharge period. An order of magnitude variability in DIC concentrations  
14   was found within the Indian estuaries sampled ( $3.4 - 44.1 \text{ mg l}^{-1}$ ) due to significant variability in  
15   the size of rivers, precipitation pattern and lithology in the catchments. Dilution with high  
16   precipitation ( $2500 \pm 500 \text{ mm}$ ) and exchange with ground waters of low DIC resulted in very low  
17   concentrations of DIC in estuaries located in the southwest of India ( $6.6 \pm 2.1 \text{ mg l}^{-1}$ ) than the  
18   estuaries located in the southeast ( $36.3 \pm 6.3 \text{ mg l}^{-1}$ ), northwest ( $30.3 \pm 8.9 \text{ mg l}^{-1}$ ) and northeast  
19   ( $19.5 \pm 6.2 \text{ mg l}^{-1}$ ) regions of India. Though the range of stable carbon isotopes of DIC ( $\delta^{13}\text{C}_{\text{DIC}}$ )  
20   indicates that DIC is largely contributed by weathering of silicate and carbonate minerals,  
21   however, the storage of water in dams/reservoirs and intrusion of marine waters caused the  
22   enrichment in stable carbon isotopic composition of DIC ( $\delta^{13}\text{C}_{\text{DIC}}$ ). It is estimated that the Indian  
23   monsoonal estuaries annually export  $\sim 10.4 \text{ Tg}$  ( $1 \text{Tg} = 10^{12} \text{ g}$ ) of DIC to the northern Indian  
24   Ocean, of which the major fraction (74.2%) enters into the Bay of Bengal and the remaining  
25   reaches to the Arabian Sea. It is mainly due to the fact that the Bay of Bengal receives  $\sim 378 \text{ km}^3$   
26    $\text{yr}^{-1}$  of freshwater from the catchment area of about 0.96 million  $\text{km}^{-2}$ , whereas the Arabian Sea  
27   receives only  $122 \text{ km}^3 \text{ yr}^{-1}$  of freshwater from the catchment area of only 0.23 million  $\text{km}^2$ .



28 Though the discharge from the Indian monsoonal rivers account for only 1.3% of global  
29 freshwater discharge, they disproportionately export 2.5% of the total DIC export by the world  
30 major rivers and 9.4% of the Asian rivers to oceans. The yield of DIC was found to be higher in  
31 the SW estuaries ( $10.8 \pm 6.6 \text{ g m}^{-2} \text{ yr}^{-1}$ ) than the other estuaries though they export only  $0.3 \text{ Tg yr}^{-1}$   
32 of DIC, which is more than an order of magnitude lower than the export by the NE ( $4.2 \text{ Tg yr}^{-1}$ )  
33 and SE estuaries ( $3.5 \text{ Tg yr}^{-1}$ ), due to intense precipitation, favorable natural vegetation and  
34 tropical wet climate, high soil organic carbon and dominance of red loamy soils in catchments of  
35 the SW rivers. This study, therefore, reveals that significant variability in the lithology and  
36 hydrological and environmental conditions over the catchments strongly controls the  
37 concentrations and yield of DIC from the Indian monsoonal estuaries.

38 *Keywords:* dissolved inorganic carbon, export flux, Indian rivers, Bay of Bengal, Arabian Sea,  
39 North Indian Ocean

## 40 1. Introduction

41 Dissolved inorganic carbon (DIC) is the major constituent of carbon species and accounts  
42 for  $\sim 38\%$  of the total fluvial carbon transport to the global oceans (Meybeck, 1993; Cai, 2011;  
43 Jarvie et al., 2017). World major river systems export annually about 33-400 Tg ( $1\text{Tg}=10^{12}\text{g}$ ) of  
44 DIC to the global oceans (Ludwig et al., 1998; Mackenzie et al., 2004; Lerman et al., 2007).  
45 Chemical weathering of carbonate and silicate rocks and soils, and exchange with the ground  
46 water in the basin are the major sources of DIC into rivers (Meybeck, 1987; Gaillardet et al.,  
47 1999, Dessert et al., 2001; Viers et al., 2007; Raymond et al., 2008; Tamoooh et al., 2013),  
48 besides in-stream processes, such as oxidation of organic carbon by heterotrophic bacteria  
49 (Mayogra et al., 2005; Battin et al., 2008; Hotchkiss et al., 2015; Samantha et al. 2015; Zou,  
50 2016) and dissolution of atmospheric carbon dioxide ( $\text{CO}_2$ ). Weathering of carbonate and



51 silicate rocks in the catchment, and uptake of DIC by aquatic plants and algae during  
52 photosynthesis reaction in rivers are the sinks of the atmospheric CO<sub>2</sub> (e.g. Berner et al., 1983;  
53 Raymond et al., 2008), while the oxidation of organic carbon is the source of CO<sub>2</sub> to the  
54 atmosphere. DIC in rivers and estuaries is therefore strongly linked to the carbon cycle.  
55 However, due to human interferences, DIC fluxes from the world major rivers have been found  
56 to increase dramatically in the last century, for example, Mississippi (Cai, 2003; Raymond and  
57 Cole, 2003; Raymond et al., 2008; Ren et al., 2015). It has been noted that substantial alterations  
58 in DIC lateral transport occurred from land to sea after the industrialization (Regnier et al., 2013;  
59 Bauer et al., 2013). The increase in riverine DIC flux was reported to have a significant impact  
60 on the chemical composition (Williamson et al., 1994; Raymond and Cole, 2003; Findlay, 2010;  
61 Tank et al., 2010) and carbon budget in the coastal waters (Cole et al., 2007; Dhillon and  
62 Inamdar, 2013). Thus, identification of major sources of DIC and its riverine export flux  
63 estimates to the coastal oceans are important for better understanding the carbon cycling and its  
64 budget on both regional and global scales (Campeau et al., 2017).

65 Fluvial carbon fluxes from rivers in the tropical region (30° N to 30°S) is critical for  
66 global carbon budgets because they contribute significant fraction of global DIC (48-64%),  
67 freshwater discharge (66.2%) and suspended sediment load (73.2%) to the world oceans, despite  
68 they occupy only ~43% of world's land area (Huang et al., 2012). Further, humid tropical  
69 climate in the region supports the export of more fluvial carbon fluxes from the continental land  
70 masses than the other climates in the world (Meybeck 1993; Ludwig et al., 1998). However,  
71 DIC fluxes from rivers in this region were not included in estimating the fluvial carbon fluxes to  
72 global oceans due to the paucity of data.



73           Numerous studies have been documented on DIC export flux from the world major  
74   rivers, for example, Mississippi (Raymond and Cole, 2003; Raymond et al., 2008; Cai et al.,  
75   2008), Changjiang and Pearl (Cai et al., 2008), Congo (Wang et al., 2013) and large river  
76   systems in the world (e.g. Gaillardet et al., 1999; Raymond et al., 2013). Although some  
77   measurements were carried out on DIC in the Indian estuaries, for example, Mandovi and Zuari  
78   (Sarma et al., 2001), Godavari estuary (Sarma et al., 2011), Cochin (Gupta et al., 2009; Bhavya  
79   et al., 2016), Hooghly (Mukhopadhyay et al., 2002; Samanta et al., 2015), Mahanadi (Pattanaik  
80   et al., 2017) and Indian estuaries (Sarma et al., 2012), however, they focused only on air-water  
81   exchange of CO<sub>2</sub>. Nevertheless, no estimations on DIC export fluxes to the north Indian Ocean  
82   from the Indian subcontinent have been made so far. For the first time, we made an effort here  
83   to identify the major sources of DIC in the Indian monsoonal estuaries and to estimate their  
84   export fluxes to the north Indian Ocean. The main objectives of this study are to (i) identify the  
85   major sources and (ii) examine the potential reasons responsible for variability in concentrations  
86   of DIC in the Indian monsoonal estuaries during the discharge (wet) period, and (iii) estimate the  
87   DIC export fluxes to the north Indian Ocean by the Indian monsoonal rivers.

88   **2. Study region and Sampling**

89   **2.1 Study Area**

90           The Indian peninsula bifurcate the north Indian Ocean into the Bay of Bengal and the  
91   Arabian Sea. Although these two basins occupies the same latitudinal belt, their oceanographic  
92   processes were reported to be remarkably different and attributed to significant differences in the  
93   freshwater influx and associated physical and biological changes (Gauns et al., 2005). This is  
94   because the glacial and peninsular rivers transport  $1.63 \times 10^{12} \text{ m}^3 \text{ yr}^{-1}$  of freshwater to the Bay of  
95   Bengal (Subramanian, 1993) whereas only  $0.3 \times 10^{12} \text{ m}^3 \text{ yr}^{-1}$  to the Arabian Sea. The large



96 freshwater influx leads to formation of a strong vertical salinity stratification (Varkey et al.,  
97 1996), which results in the suppression of vertical mixing of nutrient rich sub-surface water with  
98 that of surface, makes the Bay of Bengal relatively less productive (Prasannakumar et al., 2002)  
99 than the Arabian Sea, which is one of the highly productive zones in the world (Madhupratap et  
100 al., 1996; Smith, 2001; Barber et al., 2001) due to injection of nutrients into surface through the  
101 seasonal upwelling and convective mixing (Shetye et al., 1994; Madhupratap et al., 1996;  
102 Muraleedharan and Prasannakumar, 1996).

103 Discharge from the Indian peninsular rivers is fed by the monsoon induced precipitation  
104 over the Indian subcontinent, which receives >80% of its annual rainfall during the southwest  
105 (SW) monsoon period (June-September) (Soman and Kumar, 1990). Though some amount of  
106 rainfall occurs during the NE monsoon (December-March), it will not generate discharge as it  
107 will be stored in dams and reservoirs for domestic, industrial and irrigation purposes. Discharge  
108 from the Indian peninsular rivers is therefore occurs only during the SW monsoon season (Vijith  
109 et al., 2009; Sridevi et al., 2015) and hence, termed as monsoonal rivers. Since the freshwater  
110 discharge from the Indian monsoonal rivers is limited to only few months (June – October) in a  
111 year, unlike the European and American rivers, the entire estuary may be filled with freshwater  
112 without any vertical salinity gradient (Vijith et al., 2009; Sridevi et al., 2015) during this period.  
113 As virtually there is no discharge during the dry period, the discharge during SW monsoon (wet  
114 period) is equivalent to the annual discharge from the monsoonal rivers. Based on the rainfall  
115 intensity, forest cover, vegetation and soil type in the catchment, estuaries sampled in the present  
116 study were categorized into 4 groups, namely the northeast (NE), southeast (SE), southwest  
117 (SW) and northwest (NW) estuaries of India (Fig. 1). The SW region of India is characterized  
118 by the intense rainfall during the SW monsoon (~3000 mm) following the NE (1000-2500 mm),



119 SE (300-500 mm) and NW (200-500 mm) regions of India (Soman and Kumar, 1990). The SW  
120 rivers drain red loamy soils while the NW rivers drain black soils. The rivers reaching the Bay  
121 of Bengal (NE and SE estuaries) drain the red loamy and alluvial soils in their upper and lower  
122 catchments respectively, except the major rivers Godavari and Krishna, which also drain black  
123 soils in their upper catchment along with red loamy and alluvial soils in their middle and lower  
124 catchments (Geological Survey of India; [www.gsi.gov.in](http://www.gsi.gov.in)). Based on the discharge, monsoonal  
125 estuaries in this study were divided into two types, namely, the minor ( $<150 \text{ m}^3 \text{s}^{-1}$ ) and major  
126 ( $>150 \text{ m}^3 \text{s}^{-1}$ ) estuaries.

127 **2.2 Sample collection**

128 Estuaries are known to be biologically active spots in the aquatic ecosystem and therefore  
129 significant modification of DIC (through autotrophic primary production or heterotrophic  
130 respiration) is possible. Hence, samples were collected from mouth of the estuaries rather than  
131 from mid or upstream rivers for reliable export fluxes of DIC to the coastal ocean. Further, to  
132 minimize the inter-annual variability in DIC concentrations, sampling was conducted in  
133 discharge period of two years, i.e., 2011 and 2014 and the mean DIC concentration in each  
134 estuary was used for export flux estimations. Each estuary was sampled at 3 to 5 locations  
135 between the upstream river (near zero salinity) and mouth of the estuary in order to minimize the  
136 spatial variability in DIC concentrations, and the mean concentrations were used for flux  
137 estimates. Further, samples were collected in mid-stream of the estuary using a local  
138 mechanized boat to avoid the contamination from banks.

139 In-situ measurements and sample collection was done in the 27 estuaries (Fig. 1) during  
140 the SW monsoon season of the years, 2011 and 2014. Surface water samples at each location  
141 were collected for phytoplankton biomass (Chl-*a*), DIC and dissolved oxygen (DO). Samples



142 for DIC were collected in air-tight crimp-top glass bottles and added poison (mercuric chloride)  
143 to arrest the biological activity. DO analysis was carried out at a temporary shore laboratory set  
144 up for sample processing after the completion of sampling on each day. Water samples were  
145 filtered through GF/F (nominal pore size: 0.7 $\mu$ m) under moderate vacuum and stored in liquid  
146 nitrogen for Chl-*a* analysis at the NIO.

147 **3. Methods**

148 Temperature and salinity at the sampling locations were measured using a CTD system  
149 (Sea Bird Electronics, SBE 19 plus, United States of America). Concentrations of DO were  
150 determined by Winkler's method (Carritt and Carpenter, 1966) using an auto titrator (Metrohm,  
151 Switzerland) with potentiometric end point detection. The analytical precision of the method  
152 was  $\pm 0.07\%$  (RSD). DIC concentrations in water samples were measured at our Institute  
153 laboratory using Coulometer (UIC Inc., USA) connected to an automatic sub-sampling system.  
154 Based on the repeated analysis of samples and standards, the precision of the method was  $\pm 1.8$   
155  $\mu\text{mol l}^{-1}$ . The certified reference materials (CRM) supplied by Dr. A.G. Dickson, Scripts  
156 Institute of Oceanography, USA and internal standards were used to test the accuracy of our DIC  
157 measurements and it was found to be within  $\pm 0.2$  to  $0.3\%$ . Chlorophyll-*a* (Chl-*a*) on the filter  
158 was extracted into di-methyl formamide (DMF) and measured the extract fluorometrically using  
159 a spectrofluorophotometer (Varian Eclipse, Varian Electronics., UK) following Suzuki and  
160 Ishimaru (1990). Annual mean discharge data of rivers was taken from Meybeck and Ragu  
161 (1995, 1996), Central Water Commission, New Delhi (2006, 2012) and Kumar et al. (2005). Soil  
162 organic carbon data was taken from Kishwan et al. (2009) and rainfall data was obtained from  
163 Soman and Kumar (1990). Dissolved organic carbon (DOC) data for the Indian estuaries was  
164 taken from Krishna et al. (2015).



165 Total export flux of DIC from each river was estimated by multiplying the mean  
166 concentrations of DIC in an estuary with the mean annual discharge. Spatial variability in DIC  
167 concentrations in estuaries was minimized to a large extent by collecting samples from head to  
168 mouth of the estuary while the inter-annual variability by collecting samples during discharge  
169 periods of two years. However, variability in DIC concentrations within the discharge period  
170 results in some uncertainties in our estimations of DIC export fluxes. Time series measurements  
171 in the Godavari estuary (our unpublished results) revealed that the variability in DIC  
172 concentrations within the discharge period is up to 10%. Therefore, the error associated with our  
173 DIC flux estimates can be about  $\pm 10\%$ . DIC fluxes normalized by catchment area (yield) were  
174 calculated by dividing the total DIC export flux of the river by its catchment area.

175 **3. Results**

176 Prevailing hydrographic conditions in Indian estuaries during the sample collection were given in  
177 detail elsewhere (Sarma et al., 2012, 2014; Krishna et al., 2015). Briefly, mentioned here for  
178 ready reference. Surface water temperature was found to be higher in estuaries located on the  
179 east coast ( $30.86 \pm 1.23^\circ\text{C}$ ) than the west coast ( $27.32 \pm 1.49^\circ\text{C}$ ) of India. Salinity varied  
180 broadly from near zero (0.06) to 28.78 during the study period. Relatively higher salinities ( $>20$ )  
181 were recorded by the medium estuaries, which receives relatively lower freshwater discharge  
182 from the upstream river, for example, Nagavali (28.78), Vaigai (24.63) and Rushikulya (20.70).  
183 Dissolved oxygen saturation varied from as low as 62.6% to as high as 105%, with a mean  
184 saturation of  $89.9 \pm 11.4\%$  in the estuaries sampled. Chlorophyll-*a* (Chl-*a*) concentrations varied  
185 broadly from 0.8 to  $10.7 \text{ mg m}^{-3}$ , with relatively higher mean concentrations in the SE ( $4.7 \text{ mg}$   
186  $\text{m}^{-3}$ ) followed by the SW ( $3.0 \text{ mg m}^{-3}$ ) estuaries. However, relatively low Chl-*a* was observed in  
187 the medium ( $2.6 \pm 1.3 \text{ mg m}^{-3}$ ) than in the major estuaries ( $3.2 \pm 2.1 \text{ mg m}^{-3}$ ).



188 **3.1 Concentrations and  $\delta^{13}\text{C}$  of DIC ( $\delta^{13}\text{C}_{\text{DIC}}$ ) in the Indian monsoonal estuaries**

189 DIC concentrations in Indian estuaries widely varied from 3.4 (Bharathappuzha) to  
190 44.1 mg l<sup>-1</sup> (Vellar), with a significant spatial variability (Fig. 2). More than five times higher  
191 mean concentrations were observed in the SE (36.3±6.3 mg l<sup>-1</sup>) and NW estuaries (30.3±8.9 mg  
192 l<sup>-1</sup>) than in the SW estuaries (6.6±2.1 mg l<sup>-1</sup>), and intermediate concentrations were found in the  
193 NE estuaries (19.5±6.2 mg l<sup>-1</sup>). DIC concentrations were found to be similar (homoscedastic  
194 Student's t-test; p=0.76) in the major (22.7±13.6 mg l<sup>-1</sup>) and medium (21.1±13.2 mg l<sup>-1</sup>)  
195 estuaries. The  $\delta^{13}\text{C}_{\text{DIC}}$  varied from -13.0 to 2.5‰, with a significant spatial variability (Fig. 3) in  
196 the estuaries sampled. Relatively depleted values were observed in the west flowing estuaries of  
197 NW (-11.1±2.3‰) and SW (-7.4±1.9‰) than the east flowing estuaries of NE (-3.5±2.8‰) and  
198 SE (-2.7±5.2‰) regions of India.

199 Annual export flux of DIC from the individual estuaries to coastal ocean varied broadly  
200 from 0.009 Tg (Chalakudi) to as high as 2.32 Tg (Krishna). Annually, the NE estuaries export  
201 higher DIC flux of 4.21 Tg followed by the SE (3.50 Tg) and NW estuaries (2.38 Tg). Whereas,  
202 the SW estuaries recorded the lowest export flux of 0.30 Tg which is an order of magnitude  
203 lower than the export flux by the NE and SE estuaries (Fig. 2). The Indian monsoonal estuaries  
204 together export about 10.4 Tg yr<sup>-1</sup> of DIC to the northern Indian Ocean, of which 7.7 Tg (74.2%)  
205 enters into the Bay of Bengal and the remaining into the Arabian Sea (2.7 Tg). The estuaries,  
206 Krishna (2.32 Tg), Godavari (1.45 Tg) and Haldia (1.16 Tg) together responsible for the  
207 transport of 64% of total riverine DIC export to the Bay of Bengal by the Indian monsoonal  
208 rivers. The yield of DIC ranged from 2.7 (Bharathappuzha) to 21.6 g m<sup>-2</sup> yr<sup>-1</sup> (Mandovi),  
209 excluding the exceptionally high yield of 113.4 g m<sup>-2</sup> yr<sup>-1</sup> from Haldia estuary. The west flowing  
210 rivers to the Arabian Sea are characterized by relatively higher yield of DIC (mean 10.4±5.6 g m<sup>-1</sup>



211  $\text{yr}^{-1}$ ) than the east flowing rivers to the Bay of Bengal ( $7.3\pm4.6 \text{ g m}^{-2} \text{ yr}^{-1}$ ). Among the estuaries  
212 sampled, the SW and SE estuaries recorded higher ( $10.8\pm6.6 \text{ g m}^{-2} \text{ yr}^{-1}$ ) and lower ( $5.8\pm2.3 \text{ g m}^{-2}$   
213  $\text{yr}^{-1}$ ) yields of DIC respectively. The NW ( $9.5\pm4.0 \text{ g m}^{-2} \text{ yr}^{-1}$ ) and NE ( $8.6\pm5.7 \text{ g m}^{-2} \text{ yr}^{-1}$ )  
214 estuaries recorded intermediate values.

215 **4. Discussion**

216 Hydrographic characteristics of the Indian monsoonal estuaries during the study  
217 (discharge) period were described elsewhere (Sarma et al., 2012, 2014; Krishna et al., 2015).  
218 Strong flow from the upstream rivers due to the SW monsoon-induced precipitation over the  
219 catchment makes most of the estuaries less saline (near zero), except the minor estuaries,  
220 Nagavali, Vaigai and Rushikulya, during the study period. No vertical salinity stratification was  
221 observed in estuaries during the study period, consistent with earlier observations in the Indian  
222 estuaries during discharge period (Vijit et al., 2009; Sridevi et al., 2015), unlike the European  
223 and American estuaries (Christopher et al., 2002).

224 **4.1 Variability of DIC concentrations in the Indian monsoonal estuaries**

225 Mean DIC concentration found in this study ( $21.9\pm13.2 \text{ mg l}^{-1}$ ; range: 3.4 to  $44.1 \text{ mg l}^{-1}$ )  
226 is similar to those observed earlier in the Indian estuaries, for example, Ganga-Brahmaputra (23  
227  $\text{mg l}^{-1}$ ; Singh et al., 2005), Hooghly ( $21.8 \text{ mg l}^{-1}$ ; Samanta et al., 2015) and Mahanadi (15.0;  
228 Pattanaik et al., 2017) and elsewhere in the world, for instance, York river estuary ( $6\text{-}21 \text{ mg l}^{-1}$ ;  
229 Raymond and Bauer, 2000), Yangtze river ( $28 \text{ mg l}^{-1}$ ; Cai et al., 2008), British rivers (median 4-  
230 43  $\text{mg l}^{-1}$ ; Jarvie et al., 2017), Seri, central Japan ( $17.6\text{-}21.9 \text{ mg l}^{-1}$ ; Ishikawa et al., 2015), the  
231 Red river, Vietnam ( $9.1\text{-}29.9 \text{ mg l}^{-1}$ ; Quynh et al., 2016) and Xi river, southwest China (18-  
232 45.6  $\text{mg l}^{-1}$ , Zou, 2016). However, mean DIC concentrations in the Indian estuaries ( $21.9\pm13.2$



233 mg l<sup>-1</sup>) are higher than the global mean of 10.3 mg l<sup>-1</sup> (Meybeck and Vorusmarty, 1999) and the  
234 Asian rivers (12.7 mg l<sup>-1</sup>) in the tropical region (30°N-30°S; Huang et al., 2012), but lower than  
235 the rivers draining into the Gulf of Trieste (N Adriatic) (37-66 mg l<sup>-1</sup>; Tamse et al., 2014).

236 Among the estuaries sampled along the Indian coast, the SW estuaries are characterized  
237 by significantly lower mean concentrations of DIC (6.6±2.1 mg l<sup>-1</sup>) than the SE (36.3±6.3 mg l<sup>-1</sup>), NE (19.5±6.2 mg l<sup>-1</sup>) and NW (30.3±8.9 mg l<sup>-1</sup>) estuaries. DIC concentrations in estuaries are  
238 mainly governed by the hydrological (precipitation and runoff), lithological (type and dominance  
239 of rocks and soils) and environmental (temperature, climate and vegetation) conditions, and  
240 anthropogenic activities (deforestation and land use change) in the catchment, and in-stream  
241 physical and biological processes such as exchange with ground water (Finlay, 2003; Shin et al.,  
242 2011; Maher et al., 2013) and atmospheric CO<sub>2</sub>, autotrophic production and heterotrophic  
243 decomposition of organic matter (McConaughey et al., 1994; Abril et al., 2003; Finlay and  
244 Kendall, 2007). Since many of these processes are largely dependent on the size of the river and  
245 its catchment, the lower DIC concentrations in the SW estuaries of this study could be due to the  
246 size of the rivers. This is because, the SW rivers are small both in terms of discharge (46 km<sup>3</sup> yr<sup>-1</sup>)  
247 and catchment area (total catchment area: 0.02 M km<sup>2</sup>) than the SE (102 km<sup>3</sup> yr<sup>-1</sup> and 0.45 M  
248 km<sup>2</sup>, respectively), NE (276 km<sup>3</sup> yr<sup>-1</sup> and 0.53 M km<sup>2</sup>) and NW (75 km<sup>3</sup> yr<sup>-1</sup> and 0.21 M km<sup>2</sup>)  
249 rivers. However, DIC concentrations showed significant positive relationship with catchment  
250 area ( $r^2=0.75$ ;  $p<0.001$ ; Fig. 4a) and negative relationship with volume of discharge ( $r^2=0.57$ ;  
251  $p<0.001$ ; Fig. 4b) only in the medium estuaries (discharge: <150 m<sup>3</sup>s<sup>-1</sup>), suggesting that an area  
252 of catchment and magnitude of discharge controls DIC concentrations largely in the medium  
253 estuaries rather than the major estuaries.



255 Indian monsoonal estuaries were reported as a source of CO<sub>2</sub> to the atmosphere during  
256 discharge period (Sarma et al., 2001, 2011, 2012; Gupta et al., 2009; Bhavya et al., 2016) due to  
257 the microbial decomposition of terrestrial organic matter brought by the rivers. This suggests  
258 that the DIC input from dissolution of atmospheric CO<sub>2</sub> in estuaries can be ruled out, however,  
259 heterotrophic decomposition of organic matter adds significant amount of DIC to the Indian  
260 estuaries during discharge period. A fairly good positive correlation between DIC and DOC  
261 concentrations ( $r^2=0.34$ ,  $p<0.01$ ), except few medium estuaries, suggests that DIC addition  
262 through microbial degradation of particulate organic matter is significant in the Indian estuaries.  
263 Except the NW estuaries, which recorded relatively depleted  $\delta^{13}\text{C}$  of DIC ( $\delta^{13}\text{C}_{\text{DIC}}$ ), the positive  
264 correlation between  $\delta^{13}\text{C}_{\text{DIC}}$  and DOC concentrations ( $r^2=0.35$ ,  $p<0.01$ ), as was observed  
265 elsewhere (Xi river, Zou et al., 2016), confirms that oxidation of organic matter is one of the  
266 main DIC sources in the Indian estuaries. On the other hand, autotrophic production removes  
267 DIC as it converts DIC to organic carbon. Significant negative correlation between chlorophyll-  
268 *a* and DIC concentrations ( $r^2=0.47$ ,  $p<0.01$ ), except few SE estuaries where elevated  
269 phytoplankton biomass (Chl-a:  $>5 \text{ mg m}^{-3}$ ) was recorded, suggesting that autotrophic removal of  
270 DIC is also significant in the Indian monsoonal estuaries during the study period. Significance  
271 of DIC addition by heterotrophic decomposition and removal by autotrophic production in the  
272 Indian estuaries was confirmed by a fairly good positive correlation between  $\delta^{13}\text{C}_{\text{DIC}}$  and  
273 dissolved oxygen saturation ( $r^2=0.49$ ,  $p<0.01$ ), (depleted  $\delta^{13}\text{C}_{\text{DIC}}$  values at low % of DO  
274 saturation), except NW estuaries, which recorded depleted  $\delta^{13}\text{C}_{\text{DIC}}$  ( $<-10.0\text{\textperthousand}$ ). This is because  
275 the microbial decomposition of organic matter results in depleted  $\delta^{13}\text{C}_{\text{DIC}}$  due to preferential  
276 release of <sup>12</sup>C over <sup>13</sup>C in to DIC pool while removal of DIC by autotrophic production enriches  
277 the residual DIC due to preferential uptake of <sup>12</sup>C over <sup>13</sup>C during photosynthesis reaction.



278        As found in many estuaries over the world, submarine ground water exchange strongly  
279        influences DIC concentrations in Indian estuaries, for example, Rengarajan and Sarma (2015)  
280        found 3 to 4 times higher DIC concentrations in the ground water compared the estuarine waters  
281        of the Godavari and estimated that submarine ground water discharge contributes up to 52% of  
282        DIC concentrations in the Godavari estuarine system. The measured DIC concentrations in  
283        ground waters along the entire Indian coast (Dr. BSK Kumar, personal communication) showed  
284        strong spatial variability with relatively lower concentrations in the SW (mean  $32\pm19$  mg l<sup>-1</sup>)  
285        than the SE ( $106\pm56$ ), NE ( $92\pm31$ ) and NW ( $84\pm54$  mg l<sup>-1</sup>) regions of India during discharge  
286        period. Though the DIC concentrations in ground waters were higher by about 3 to 5 times than  
287        the concentrations found in the Indian estuaries, however, exchange of ground water with  
288        relatively low DIC concentrations in the SW region could have, at least partly, caused the lower  
289        DIC concentrations in the SW estuaries.

290        Spatial distribution of bedrock and soils over the Indian subcontinent shows that  
291        Narmada and Tapti rivers and upper reaches of Godavari and Krishna rivers drain the igneous  
292        rocks (Deccan traps) while the other rivers flow through the metamorphic rocks (Pre-Cambrian),  
293        the predominant rock type in south India. However, Haldia and lower reaches of the SE rivers  
294        drain the sedimentary rocks (Geological Survey of India, <https://www.gsi.gov.in>). Although, the  
295        chemical weathering rates were reported to be higher for Deccan Trap basalts (Das et al., 2005;  
296        Singh et al., 2005), however, higher DIC concentrations were also found in estuaries draining the  
297        metamorphic rocks, suggesting that strong influence of factors other than the bedrocks in the  
298        catchment. Spatial distribution of soils shows that lateritic soils, which are poor in lime and  
299        silicate, occupied the catchment of the SW rivers. Chemical weathering rates are relatively lower  
300        in the lateritic than the non-lateritic soils and the consumption of atmospheric/soil CO<sub>2</sub> through



301 silicate weathering is lower by ~2 times in the former than the latter (Boeglin and Probst, 1998).  
302 Though the upper reaches of the east flowing rivers (NE and SE) drain the lime-poor red and  
303 yellow soils, however, they are dominated by the lime-rich alluvial soils in their lower reaches.  
304 Upper reaches of Krishna and Godavari also drain the lime-rich black soils. The dominance of  
305 lateritic soils, which are relatively less susceptible to chemical weathering than the non-lateritic  
306 soils, over the catchments of the SW rivers could have, at least in part, lowered the DIC  
307 concentrations in SW estuaries during the study period.

308 The SW region of India receives highest amount of rainfall during the SW monsoon  
309 ( $2500\pm500$ mm) than the SE ( $400\pm50$ ), NE ( $1000\pm200$ ) and NW ( $750\pm250$ mm) regions of India  
310 (Soman and Kumar, 1990). Though the intense rainfall in the SW region is expected to cause  
311 higher weathering rates and therefore higher DIC (e.g., Gupta et al., 2011), the observed lower  
312 DIC concentrations in the SW estuaries could be due to the dilution. The catchment area  
313 normalized volume of discharge was found to be higher in the SW estuaries ( $1.71\text{ m}^3\text{ m}^{-2}$ ) than in  
314 the SE (0.17), NE (0.6) and NW ( $0.32\text{ m}^3\text{ m}^{-2}$ ) estuaries, suggesting that significant dilution of  
315 DIC concentrations in the SW estuaries. A strong negative correlation between precipitation in  
316 the catchment and DIC concentration in estuaries ( $r^2= 0.89$ ,  $p<0.001$ ; Fig. 5) confirms that DIC  
317 concentration in Indian estuaries are rather controlled by the intensity of precipitation over the  
318 catchment.

#### 319 **4.2 $\delta^{13}\text{C}$ of DIC in the Indian monsoonal estuaries**

320 The stable isotopic composition of DIC ( $\delta^{13}\text{C}_{\text{DIC}}$ ) is a well-established and widely used  
321 tracer to identify the major sources of DIC in rivers (e.g. Singh et al., 2005; Tamoooh et al., 2013;  
322 Samanta et al., 2015; Zou, 2016) because each of the DIC sources have a distinct  $\delta^{13}\text{C}_{\text{DIC}}$  ratios  
323 (Deines et al., 1974). DIC originated by dissolution of atmospheric  $\text{CO}_2$  is about -7 to -8‰



324 (Coplen et al., 2002) whereas it is about -26 to -27‰ if DIC is derived from oxidation of organic  
325 matter produced by C<sub>3</sub> plants (O'Leary, 1988). The  $\delta^{13}\text{C}$  of DIC generated by soil CO<sub>2</sub> dissolved  
326 carbonic acid weathering of silicates is about -17 to -21‰ (Solomon and Cerling, 1987) while it  
327 is close to -9‰ for carbonate rocks because half of the carbon comes from carbonate rocks (0‰,  
328 Land, 1980) during weathering. Whereas, the weathering of carbonate and silicate minerals  
329 yield  $\delta^{13}\text{C}_{\text{DIC}}$  values -7 to -8‰ and -3 to -4‰, respectively, if the carbonic acid formed by the  
330 dissolution of atmospheric CO<sub>2</sub>. Although, DIC derived from different sources have distinctly  
331 different  $\delta^{13}\text{C}_{\text{DIC}}$  values, however, the interpretation the  $\delta^{13}\text{C}_{\text{DIC}}$  values for identification of its  
332 sources is still challenging (Amiotte-Suchet et al., 1999; Campeau et al., 2017) due to the  
333 isotopic fractionations associated with complex mixture of sources and processes such as  
334 photosynthesis (O'Leary, 1988; Finlay, 2004; Parker et al., 2005, 2010), respiration (Finlay,  
335 2003; Waldron et al., 2007), DOC photo-oxidation (Opsahl and Zepp, 2001; Vahatalo and  
336 Wetzel, 2008), anaerobic metabolism (Waldron et al., 1999; Maher et al., 2015) and equilibration  
337 with atmospheric CO<sub>2</sub>.

338 The range of  $\delta^{13}\text{C}_{\text{DIC}}$  found in this study (-13.0 to 2.5‰) was similar to those reported  
339 earlier in various rivers, for example, Brahmaputra (Singh et al., 2005), Rhine (Buhl et al., 1991),  
340 Ottawa (Telmer et al., 1999), St. Lawrence (Yang et al., 1996), Nanpan and Beipan rivers,  
341 southwest China (Zou, 2016) and Tana river, Kenya (Tamooh et al., 2013). The range of  $\delta^{13}\text{C}_{\text{DIC}}$   
342 in this study indicates a variety of sources, including silicate and carbonate weathering and  
343 marine waters, contributes DIC to the Indian monsoonal estuaries during the study period.  
344 Relatively depleted  $\delta^{13}\text{C}_{\text{DIC}}$  in the west flowing river estuaries of NW (mean  $-11.1 \pm 2.3\text{‰}$ ) and  
345 SW (mean:  $-7.4 \pm 1.9\text{‰}$ ) regions suggest that DIC is contributed from silicate and carbonate  
346 weathering by the carbonic acid, produced from the dissolution of both soil CO<sub>2</sub> and atmospheric



347 CO<sub>2</sub>. Zou (2016) found the  $\delta^{13}\text{C}_{\text{DIC}}$  values in the range of -13.9 to -8.1 ‰ in the Nanpan and  
348 Beipan rivers of SW China and were attributed to dominant contribution of DIC from weathering  
349 of carbonate minerals. Relatively enriched  $\delta^{13}\text{C}_{\text{DIC}}$  in the east flowing river estuaries of NE (-6.5  
350 to 0.7; mean: -3.5±2.8‰) and SE (-7.9 to 2.5‰; -2.7±5.2‰) indicates that major contribution of  
351 DIC is from chemical weathering of carbonate rocks by atmospheric CO<sub>2</sub> dissolved carbonic  
352 acid or acid from non-carbon sources (Li et al., 2008). Weathering of carbonate minerals by acid  
353 sources other than carbonic acid causes enrichment compared to weathering by carbonic acid due  
354 to lack of contribution from  $\delta^{13}\text{C}$ -depleted carbonic acid of soil CO<sub>2</sub> (-17 to -21‰) or  
355 atmospheric CO<sub>2</sub> (-7 to -8‰) origin to the  $\delta^{13}\text{C}$ -enriched carbonate rocks (0‰, Land 1980).

356 In addition to the sources, hydrological and biological processes also influence the  
357  $\delta^{13}\text{C}_{\text{DIC}}$  in streams/rivers. For example, heavy precipitation in the SW region (2500±500mm)  
358 than the other regions tends to cause depletion in  $\delta^{13}\text{C}_{\text{DIC}}$  values due to shorter residence time of  
359 soil water (Amiotte-Suchet et al., 1999) while CO<sub>2</sub> out gassing causes enrichment due to  
360 accumulation of <sup>13</sup>C during diffusive efflux (Clark and Fritz, 1997) in stored water bodies. Many  
361 of the east flowing rivers are major and are dammed at many locations (e.g. Godavari, Krishna  
362 and Cauvery) for domestic, industrial and irrigation purposes. CO<sub>2</sub> out gassing due to  
363 heterotrophic decomposition of organic matter and autotrophic production significantly alters the  
364  $\delta^{13}\text{C}_{\text{DIC}}$  signatures in reservoirs (Shin et al., 2001). Further, equilibrium with atmospheric CO<sub>2</sub> in  
365 the reservoirs due to no/lean flow leads to enrichment in the  $\delta^{13}\text{C}_{\text{DIC}}$  values (Brunet et al., 2005;  
366 Bouvillion et al., 2009; Zeng et al., 2011; Tamooh et al., 2013). Hence, relatively enriched  
367  $\delta^{13}\text{C}_{\text{DIC}}$  in the NE and SE estuaries could also be due to the storage of water in reservoirs/dams.  
368 A significant positive correlation between DIC concentrations and  $\delta^{13}\text{C}_{\text{DIC}}$  ( $r^2=0.77$ ;  $p<0.001$ ;  
369 Fig. 7), excluding the positive values, indicate that significant contribution of DIC from



370 oxidation of particulate organic carbon in dams/reservoirs or stored water bodies. Shin et al.  
371 (2011) attributed the stream  $\delta^{13}\text{C}_{\text{DIC}}$  values of  $-6.9 \pm 1.6\text{\textperthousand}$  and  $-7.8 \pm 1.5\text{\textperthousand}$  in silicate and  
372 carbonate dominated catchments, respectively, in tributaries of the Han River, South Korea to  
373  $\text{CO}_2$  out gassing. Positive  $\delta^{13}\text{C}_{\text{DIC}}$  values ( $>0\text{\textperthousand}$ ) were observed only in Rushikulya (0.1‰),  
374 Nagavali (0.7‰) and Vaigai (2.5‰) in which relatively higher salinities ( $>20$ ) were found  
375 during the study period. This is concurrent with earlier observations in the Indian estuaries,  
376 Hooghly (Samanta et al., 2015) and Cochin (Bhavya et al., 2016) where relatively enriched  
377  $\delta^{13}\text{C}_{\text{DIC}}$  were found at higher salinities. A strong positive correlation was found between  $\delta^{13}\text{C}_{\text{DIC}}$   
378 and salinity (Fig. 6;  $r^2=0.71$ ,  $p<0.001$ ), suggesting that  $\delta^{13}\text{C}_{\text{DIC}}$  values in the Indian estuaries are  
379 influenced by the intrusion of marine waters ( $\delta^{13}\text{C}_{\text{DIC}}$ : -1 to 2‰).

380 **4.3 Total DIC export by the Indian monsoonal rivers to the north Indian Ocean**

381 Indian monsoonal rivers annually export  $\sim 10.4$  Tg of DIC to the north Indian Ocean.  
382 Nearly three fourth of this amount (7.7 Tg) reaches to the Bay of Bengal while the remaining  
383 into the Arabian Sea. It is mainly attributed to the magnitude of discharge because the Bay of  
384 Bengal annually receives  $378 \text{ km}^3$  of freshwater from the catchment area of about  $0.96 \text{ M km}^{-2}$ ,  
385 whereas the Arabian Sea receives only  $122 \text{ km}^3$  of freshwater from the catchment area of only  
386  $0.23 \text{ M km}^2$ . Although the increase in volume of discharge dilutes the DIC flux from rivers  
387 (Jarvie et al., 1997; Shanley et al., 2002), bicarbonate fluxes to the Gulf of Mexico were reported  
388 to increase with the volume of discharge from the Mississippi river (Raymond and Oh, 2007) due  
389 to small dilution factor.

390 The total DIC export by the Indian monsoonal estuaries ( $10.4 \text{ Tg yr}^{-1}$ ) is only 2.5% of the  
391 total DIC export by the world major rivers ( $400 \text{ Tg yr}^{-1}$ ), and 9.4% of the export by the Asian



392 rivers (111 Tg yr<sup>-1</sup>; Huang et al., 2012). The DIC export from the Indian estuaries is far less than  
393 the DIC export by the American (61.4 Tg yr<sup>-1</sup>) and African (17.7 Tg yr<sup>-1</sup>) rivers and major rivers  
394 draining to the tropical Atlantic from South America and Africa (53 Tg yr<sup>-1</sup>, Araujo et al. 2014).  
395 It is mainly due to the fact that the volume of discharge from the Indian monsoonal rivers is very  
396 low (~500 km<sup>3</sup>) compared to the American (11,799 km<sup>3</sup>) and African (3,786 km<sup>3</sup>) rivers.  
397 However, the Indian monsoonal rivers are exporting DIC disproportionately to the north Indian  
398 Ocean because they account for only 1.3% of the global river discharge but export 2.5% of the  
399 global riverine DIC to the oceans. Disproportionate DIC fluxes from the tropical regions are  
400 mainly attributed to the favourable climatic conditions, lithology and land use cover (Huang et  
401 al., 2012) in this region. Relatively higher export fluxes from the Indian rivers could be due to  
402 higher weathering rates of silicate and carbonate minerals in the drainage basins of the Indian  
403 rivers (Das et al., 2005; Gurumurty et al., 2012; Pattanaik et al., 2013)

404 Krishna et al. (2015) reported that Indian monsoonal estuaries export 2.32 Tg yr<sup>-1</sup> of  
405 dissolved organic carbon (DOC) to the north Indian Ocean. When combined the total fluvial  
406 dissolved carbon flux would be 12.71 Tg yr<sup>-1</sup>. This indicate that the total fluvial dissolved  
407 carbon export to the north Indian Ocean by the Indian monsoonal estuaries is predominantly  
408 contributed by DIC (~81%) than DOC, consistent with earlier reports elsewhere in the world, for  
409 example, the British rivers (80%, Jarvie et al., 2017). Since the catchment area of the Indian  
410 monsoonal rivers ranged widely from as low as 0.001 M km<sup>2</sup> to as high as 0.313 M km<sup>2</sup>, the  
411 export fluxes of DIC were normalized with the catchment area of river to obtain DIC yield from  
412 each river in order to examine various factors controlling the lateral DIC export to the north  
413 Indian Ocean.

414 **4.4 Yield of DIC from the Indian monsoonal rivers**



415 The yield of DIC found in this study (mean  $8.7 \pm 5.2 \text{ g m}^{-2} \text{ yr}^{-1}$ ) is similar those found  
416 earlier in rivers from the tropical region ( $30^{\circ}\text{N} - 30^{\circ}\text{S}$ ) of the Asian continent ( $9.79 \text{ g m}^{-2} \text{ yr}^{-1}$ ;  
417 Huang et al., 2012), but significantly higher than the American ( $3.33 \text{ g m}^{-2} \text{ yr}^{-1}$ ) and African  
418 ( $0.63 \text{ g m}^{-2} \text{ yr}^{-1}$ ) continents of this tropical region (Huang et al., 2012). The yield of DIC from  
419 river catchment were reported to be controlled by the hydrological (precipitation, runoff and  
420 groundwater exchange) and environmental (temperature, type and dominance of soils, soil  
421 organic carbon, natural vegetation and forest cover) conditions and anthropogenic activities (land  
422 use change and deforestation) in the catchment (Raymond et al., 2008; Huang et al., 2012).  
423 Although the SW estuaries annually export relatively less DIC to the north Indian Ocean (0.30  
424 Tg) due to their lower volume of discharge ( $46 \text{ km}^3 \text{ yr}^{-1}$ ) from relatively smaller catchment area  
425 ( $0.02 \text{ M km}^2$ ) than the SE (3.50 Tg,  $102 \text{ km}^3 \text{ yr}^{-1}$  and  $0.43 \text{ M km}^2$  respectively), NE (4.21 Tg, 276  
426 and 0.53) and NW (2.38 Tg,  $75 \text{ km}^3 \text{ yr}^{-1}$  and  $0.21 \text{ M km}^2$ ) estuaries, strikingly, the higher yield of  
427 DIC was found in the former ( $10.8 \pm 6.6 \text{ g m}^{-2} \text{ yr}^{-1}$ ) than the latter ( $5.8 \pm 2.3$ ,  $8.6 \pm 5.7$  and  $9.5 \pm 3.9 \text{ g}$   
428  $\text{m}^{-2} \text{ yr}^{-1}$ , respectively). This suggests that strong control of catchment and/or in-stream processes  
429 on yield of DIC from the monsoonal rivers. However, DIC yield showed significant positive  
430 correlation with the volume of discharge ( $r^2=0.66$ ,  $p<0.001$ ) in medium estuaries and no such  
431 relationship was found in the major estuaries. Significant negative relationships were observed  
432 between DIC yield and catchment area in the medium ( $r^2=0.52$ ,  $p<0.001$ ) and major estuaries  
433 ( $r^2=0.49$ ,  $p<0.001$ ). This suggests that high precipitation over small catchments increases the  
434 DIC yield from the Indian estuaries because the dense precipitation increases the scouring of  
435 DIC from soils and rocks in their catchment. A strong linear relationship between the yield of  
436 DIC and the intensity of precipitation ( $r^2=0.64$ ,  $p<0.001$  Fig. 8a) confirms that dense  
437 precipitation increases the export yield of DIC. This could be one the reasons for the observed



438 higher yield of DIC in the SW estuaries which receives high precipitation ( $2500\pm500\text{mm}$ ) over  
439 the small catchment area ( $0.02 \text{ M km}^2$ ).

440 Ground water exchange do not appears to be controlling DIC yield from the Indian  
441 monsoonal estuaries because the groundwater DIC concentrations were lower in the SW ( $32\pm19$   
442  $\text{mg l}^{-1}$ ) than the other regions SE ( $106\pm56$ ), NE ( $92\pm31$ ) and NW ( $84\pm54\text{mg l}^{-1}$ ). Existing natural  
443 vegetation of tropical moist deciduous and tropical wet evergreen and semi evergreen forests in  
444 the SW region also could have increased DIC yield from the SW estuaries compared to the other  
445 estuaries as this vegetation favors the export fluxes of DIC. The drainage basins of the Indian  
446 monsoonal estuaries are largely under the tropical dry and wet climate except the SW rivers,  
447 Narmada and Tapti. The rivers Narmada and Tapti are under the arid and semiarid climate while  
448 the SW rivers are under the tropical wet climate which was also reported to facilitate the riverine  
449 export of material from drainage basin to the coastal ocean.

450 Catchments of the SW rivers are largely occupied by the cation deficient lateritic soils  
451 and therefore precipitation of carbonate minerals in soils is poor. As a result, the soil inorganic  
452 carbon content in surface (100cm) soils of the catchment of SW rivers was lower than in  
453 catchments of the other monsoonal rivers studied (Sreenivas et al., 2016). On the other hand, the  
454 authors (Sreenivas et al., 2016) and Krishwan et al. (2009) found that the soil organic carbon was  
455 higher in the former than the latter. The relationship between soil inorganic and organic carbon is  
456 primarily dependent on the soil characteristics in the catchment. For example, Guo et al. (2016)  
457 demonstrated that increase in the soil organic carbon content enhanced the soil inorganic carbon  
458 in the cropland of upper Yellow river delta, China. A strong positive relationship between soil  
459 organic and inorganic carbon was also found in the Yanqi river basin, northwest China (Wang et  
460 al., 2015), and soils in the America (Stevenson et al., 2005) and Canada (Landi et al., 2003). On



461 the other hand, a negative relationship was found between soil organic and inorganic carbon in  
462 the North China Plain (Huang et al., 2006) and west Loess Plateau (Zeng et al., 2008). The  
463 negative relationship is mainly due to the higher production of CO<sub>2</sub> by decomposition of soil  
464 organic carbon and root respiration resulting in the formation of acidic conditions that lead to  
465 dissolution of soil carbonates. The higher soil organic carbon in the catchment of the SW than in  
466 catchment of the SE, NE and NW rivers (Kishwan et al., 2009; Sreenivas et al., 2016) therefore,  
467 produces more CO<sub>2</sub> through microbial decomposition and causes dissolution of soil carbonates  
468 leading to the higher yield of DIC from the SW estuaries. A significant linear correlation  
469 between soil organic carbon content and DIC yield in this study ( $r^2=0.65$ ,  $p<0.001$ ; Fig. 8b)  
470 suggests that strong influence of soil organic carbon content in the catchment on DIC yield from  
471 the Indian monsoonal rivers. However, basin scale studies are required for comprehensive  
472 understanding of the influence of environmental and anthropogenic factors on DIC export fluxes  
473 from the Indian monsoonal rivers.

474 **5. Summary**

475 In order to examine the variability of dissolved inorganic carbon (DIC) concentrations  
476 and to identify its major sources in the Indian monsoonal estuaries, and to estimate the riverine  
477 export fluxes of DIC to the north Indian Ocean, we sampled a total of 27 major and medium  
478 estuaries along the Indian coast during wet period. An order of magnitude variability was found  
479 in DIC concentrations among the estuaries sampled (3.4 - 44.1 mg l<sup>-1</sup>), with a lower mean  
480 concentrations of  $6.6 \pm 2.1$  mg l<sup>-1</sup> in estuaries located in the SW region of India. It is attributed to  
481 significant variability in the size of rivers, precipitation pattern and lithology in their catchments.  
482 Magnitude of discharge, catchment area and in-stream processes are appears to be important  
483 factors for medium estuaries rather than major estuaries in controlling the concentration and



484 yield of DIC, probably due to a significant variability in lithology and hydro-geological and  
485 environmental conditions in the catchments. Indian monsoonal estuaries annually export ~10.4  
486 Tg of DIC to the north Indian Ocean, of which 7.7 Tg enters in to the Bay of Bengal while the  
487 Arabian Sea receives only 2.7 Tg. It is mainly attributed to the volume of river discharge as  
488 former receives  $\sim 378 \text{ km}^3 \text{ yr}^{-1}$  while the latter receives only  $122 \text{ km}^3 \text{ yr}^{-1}$  of freshwater from the  
489 Indian monsoonal rivers. The range of  $\delta^{13}\text{C}_{\text{DIC}}$  found in this study suggests that DIC is largely  
490 contributed from weathering of silicate and carbonate minerals by carbonic acid formed by  
491 dissolution of both soil and atmospheric CO<sub>2</sub>. However, relatively enriched  $\delta^{13}\text{C}_{\text{DIC}}$  in the east-  
492 flowing river estuaries indicated the storage of water in dams/reservoirs and intrusion of marine  
493 waters. Dense rainfall ( $2500 \pm 500 \text{ mm}$ ) and higher soil organic carbon content ( $101.4 \text{ g ha}^{-1}$ ) in  
494 the catchment of SW rivers than in the catchment of the other rivers resulted in higher yield of  
495 DIC from the former than the latter.

496 **6. Acknowledgements**

497 We would like to thank the Director, CSIR - National Institute of Oceanography (NIO), Goa, and  
498 the Scientist-In-Charge, NIO-Regional Centre, Visakhapatnam for their kind support and  
499 encouragement. We also acknowledge Dr. M. Dileep Kumar, NIO, Goa for his guidance and  
500 encouragement. The work is part of the Council of Scientific and Industrial Research (CSIR),  
501 funded research project. This publication has NIO contribution number .....

502 **7. Data Availability**

503 The data set used in the current study can be obtained from the corresponding author by an e-  
504 mail request.

505



506 References

507 Abril, G., Etcheber, H., Delille, B., Frankignoulle, M. and Borges A. V.: Carbonate dissolution  
508 in the turbid and eutrophic Loire estuary, *Mar. Ecol. Progr. Ser.*, 259, 129-138, 2003.

509

510 Amiotte-Suchet, P. et al.:  $\delta^{13}\text{C}$  pattern of dissolved inorganic carbon in a small granitic  
511 catchment: the Strengbach case study (Vosges mountains, France), *Chem. Geol.*, 159, 129-145,  
512 doi:10.1016/s0009-2541(99)00037-6, 1999.

513

514 Araujo, M., Noriega, C., and Lefevre, N.: Nutrients and carbon fluxes in the estuaries of major  
515 rivers flowing into the tropical Altantic, *Front. Mar. Sci.*, 1, 1-16, 2014.

516

517 Barber, R. T., Marra, J., Bidigare, R. C., Codispoti, L. A., Halpern, D., Johnson, Z., Latasa, M.,  
518 Goericke, R., and Smith, S. L.: Primary productivity and its regulation in the Arabian Sea during  
519 1995, *Deep Sea Res., Part II*, 48, 1127-1172, 2001.

520

521 Battin, T. J. et al.: Biophysical controls on organic carbon fluxes in fluvial networks, *Nature  
522 Geosci.*, 1, 95-100, doi:10.1038/ngeo101, 2008.

523

524 Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P.A.G.:  
525 The changing carbon cycle of the coastal ocean, *Nature*, 504, 61-70, doi:10.1038/Nature12857,  
526 2013.

527

528 Berner, R. A., Lasaga, A. C., Garrels, R. M.: The carbonate-silicate geochemical cycle and its  
529 effect on atmospheric carbon dioxide over the past 100 million years, *Am. J. Sci.*, 283, 641-683,  
530 1983

531

532 Bhavya, P.S., Kumar, S., Gupta, G.V.M., Sudharma, K.V., Sudheesh, V., and Dhanya, K.R.:  
533 Carbon isotopic composition of suspended particulate matter and dissolved inorganic carbon in  
534 the Cochin estuary during post-monsoon, *Curr.Sci.*, 100, 1539-1543, 2016.

535

536 Boeglin, J. L., and Probst, J. L.: Physical and chemical weathering rates and CO<sub>2</sub> consumption in  
537 a tropical lateritic environment: the upper Niger basin, *Chem. Geol.*, 148, 137-156, 1998.

538

539 Bouillon, S., Abril, G., Borges, A. V., Dehairs, F., Govers, G., Hughes, H. J., Merckx, R.,  
540 Meysman, F. J. R., Nyunja, J., Osburn, C., and Middelburg, J. J.: Distribution, origin and cycling  
541 of carbon in the Tana River (Kenya): a dry season basin-scale survey from headwaters to the  
542 delta, *Biogeosciences*, 6, 2475-2493, doi:10.5194/bg-6-2475-2009, 2009.

543

544 Brunet, F. et al.  $\delta^{13}\text{C}$  tracing of dissolved inorganic carbon sources in Patagonian rivers  
545 (Argentina). *Hydrol. Process.*, 19, 3321-3344, doi:10.1002/hyp.5973, 2005.

546



547 Buhl, D., Neuser, R. D., Richter, D. K., Riedel, D., Roberts, B., Strauss, H. and Veizer, J.: Nature  
548 and nurture; Environmental isotope story of the river Rhine. *Naturwissenschaften*, 78, 337–346,  
549 1991.

550

551 Cai, W. J., Guo, X. H., Chen, C. T. A., Dai, M. H., Zhang, L. J., Zhai, W. D., Lohrenz, S. E.,  
552 Yin, K. D., Harrison, P. J., and Wang, Y. C.: A comparative overview of weathering intensity and  
553  $\text{HCO}_3^-$  flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang  
554 (Pearl) and Mississippi Rivers, *Cont. Shelf Res.*, 28, 1538–1549, 2008.

555 Cai, W. J.: Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River  
556 plume, *Geophys. Res. Lett.*, 30, 1032, 2003.

557

558 Cai, W. –J.: Estuarine and coastal ocean carbon paradox:  $\text{CO}_2$  sinks or sites of terrestrial carbon  
559 incineration? *Annu Rev Mar Sci*, 3, 123–145, 2011.

560

561 Campeau, A., Wallin, M. B., Giesler, R., Löfgren, S., Mört, C. –M., Schiff, S., Venkiteswaran,  
562 J. J. and Bishop, K.: Multiple sources and sinks of dissolved inorganic carbon across Swedish  
563 streams, refocusing the lens of stable C isotopes, *Nature, Scientific Reports*, 7, 9158 ,  
564 DOI:10.1038/s41598-017-09049-9, 2017.

565

566 Carritt, D. E. and Carpenter, J. H.: Comparison and evaluation of currently employed  
567 modifications of the Winkler method for determining dissolved oxygen in seawater: A NASCO  
568 report, *J. Mar. Res.*, 24, 286–318, 1966.

569

570 Central Water Commission, Integrated Hydrological Data Book, 680 pp., New Delhi, 2012.

571 Central Water Commission: Integrated Hydrological Data Book, 383 pp., New Delhi, 2006.

572 Christopher, P. B., Luettich Jr., R. A., Powers, S. P., Peterson, C. H., and McNinch, J. E.:  
573 Estimating the spatial extent of bottom-water hypoxia and habitat degradation in a shallow  
574 estuary, *Mar. Ecol. Prog. Ser.*, 230, 103–112, 2002.

575

576 Clark, I. D., and Fritz, P.: Environmental isotopes in hydrogeology, CRC Press, 1997.

577

578 Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte,  
579 C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J.: Plumbing the global  
580 carbon cycle: Integrating inland waters into the terrestrial carbon budget, *Ecosystems*, 10, 171–  
581 184, 2007.

582

583 Coplen, T. B. et al.: Compilation of minimum and maximum isotope ratios of selected elements  
584 in naturally occurring terrestrial materials and reagents, U.S. Department of the Interior and U.S.  
585 Geological Survey, 2002.

586

587 Das, A., Krishnaswami, S. and Bhattacharya, S. K.: Carbon isotope ratio of dissolved inorganic  
588 carbon (DIC) in rivers draining the Deccan Traps, India: Sources of DIC and their magnitudes.  
589 *Earth Planet. Sci. Lett.*, 236, 419–429, doi:10.1016/j.epsl.2005.05.009, 2005.



590  
591 Deines, P., Langmuir, D., and Harmon, R. S.: Stable carbon isotope ratios and the existence of a  
592 gas phase in the evolution of carbonate ground waters, *Geochim. Cosmochim. Acta*, 38, 1147–  
593 1164, doi:10.1016/0016-7037(74)90010-6, 1974.  
594 Dessert, C., Dupre, B., Francois, L. M., Schott, J., Gaillardet, J., Chakrapani, G., and Bajpai, S.:  
595 Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the  
596  $^{87}\text{Sr}/^{86}\text{Sr}$  ratio of seawater. *Earth and Planet. Sci. Lett.*, 188, 459–474, 2001.  
597  
598 Dhillon, G. S., and Inamdar, S.: Extreme storms and changes in particulate and dissolved organic  
599 carbon in runoff: Entering uncharted waters?, *Geophys. Res. Lett.*, 40, 1322–1327,  
600 doi:10.1002/grl.50306., 2013.  
601  
602 DOE: Hand book of methods for the analysis of the various parameters of the carbon dioxide  
603 system in seawater, version 2, edited by Dickson, A.G. and Goyet, C., Rep. ORNL/CDIAC-74,  
604 Oak Ridge Natl. Lab., Oak Ridge, Tenn, doi:10.1029/2002GL016312, 1998.  
605  
606 Findlay, S.: Stream microbial ecology, *J. North Am. Benthol. Soc.*, 29, 170–181,  
607 doi:10.1899/09-023.1, 2010.  
608  
609 Finlay, J. C. and Kendall, C.: Stable isotope tracing of temporal and spatial variability in organic  
610 matter sources to freshwater ecosystems, In: *Stable Isotopes in Ecology and Environmental*  
611 *Science*, 2nd edn., edited by: Michener, R. H. and Lajtha, K., Blackwell Publishing, Malden,  
612 USA, 283–333, 2007.  
613  
614 Finlay, J. C.: Controls of streamwater dissolved inorganic carbon dynamics in a forested  
615 watershed, *Biogeochem.*, 62, 231–252, 2003.  
616  
617 Finlay, J. C.: Patterns and controls of lotic algal stable carbon isotope ratios, *Limnol. Oceanogr.*,  
618 49, 850–861, 2004.  
619  
620 Gaillardet, J., Dupre, B., Louvat, P., and Allegre, C. J.: Global silicate weathering and  $\text{CO}_2$   
621 consumption rates deduced from the chemistry of large rivers. *Chem. Geol.* 159, 3–30, 1999.  
622  
623 Gauns, M., Madhupratap, M., Ramaiah, N., Jyothibabu, R., Fernandes, V., Paul, J. T., and  
624 Kumar, S. P.: Comparative accounts of biological productivity characteristics and estimates of  
625 carbon fluxes in the Arabian Sea and the Bay of Bengal, *Deep Sea Res., Part II*, 52, 2003–2017,  
626 2005.  
627  
628 Guo, Y., Wang, X., Li, X., Wang, J., Xu, M., and Li, D.: Dynamics of soil organic and inorganic  
629 carbon in the cropland of upper Yellow River Delta, China, *Nature Scientific Reports*, 6, 36105,  
630 DOI: 10.1038/srep36105, 2016.  
631  
632 Gupta, G. V. M., Thottathil, S. D., Balachandran, K. K., Madhu, N. V., Madeswaran, P., and Nair,  
633 S.:  $\text{CO}_2$  supersaturation and net heterotrophy in a tropical estuary (Cochin, India): influence of  
634 anthropogenic effect, *Ecosystems*, 12, 1145–1157, doi:10.1007/s10021-009-9280-2, 2009.  
635



636 Gupta, H., Chakrapani, G. J., Selvaraj, K., and Kao, S.-J.: The fluvial geochemistry,  
637 contributions of silicate, carbonate and saline–alkaline components to chemical weathering flux  
638 and controlling parameters: Narmada River (Deccan Traps), India, *Geochim. Cosmochim. Acta*,  
639 75, 800–824, 2011.

640 Gurumurthy G. P., Balakrishna K., Riotte J., Braun J.-J., Audry S., Shankar H. N. U. and  
641 Manjunatha B. R.: Controls on intense silicate weathering in a tropical river, southwestern India,  
642 *Chem.. Geol.*, 300–301, 61–69, 2012.

643

644 Hotchkiss, E. R. *et al.* Sources of and processes controlling CO<sub>2</sub> emissions change with the size  
645 of streams and rivers, *Nature Geoscience* 8, doi:10.1038/Ngeo2507, 2015.

646

647 Huang, B., Wang, J. G., Jing, H. Y., and Xu, S. W.: Effects of long- term application fertilizer on  
648 carbon storage in calcareous meadow soil, *J. Agro-Environ. Sci.*, 25, 161–164, 2006.

649

650 Huang, T-H., Fu, Y-H., Pan, P-Y., and Arthur, C.T.: Fluvial carbon fluxes in tropical rivers,  
651 *Current Opinion in Environmental Sustainability*, 4, 162–169, 2012.

652

653 Ishikawa, N.F., Tayasu, I., Yamane, M., Yokoyama, Y., Sakai, S., and Ohkouchi, N.: Sources of  
654 dissolved inorganic carbon in two small streams with different bedrock geology; Insights from  
655 carbon isotopes. *Radiocarbon*, 57, 439–448, 2015.

656

657 Jarvie, H. P., Neal, C., Leach, D. V., Ryland, G. P., House, W. A., Robson, A. J.: Major ion  
658 concentrations and the inorganic carbon chemistry of the Humber rivers, *Sci. Total Environ.*,  
659 194, 285–302, 1997.

660

661 Jarvie, H.P., King, S.M., and Neal, C.: Inorganic carbon dominates total dissolved carbon  
662 concentrations and fluxes in British rivers: Application of the THINCARB model –  
663 Thermodynamic modeling of inorganic carbon in freshwaters, *Sci. Tot. Environ.*, 575, 496–512,  
664 2017.

665

666 Kishwan, J., Pandey, R., and Dhadwal, V. K.: India's forest and tree cover: Contribution as a  
667 carbon sink, *Tech. Pap.* 130, ICFRE BL-23, 2009.

668

669 Krishna, M. S., Prasad, V. R., Sarma, V. V. S. S., Reddy, N. P. C., Hemalatha, K. P. J., and  
670 Rao Y. V.: Fluxes of dissolved organic carbon and nitrogen to the northern Indian Ocean from  
671 the Indian monsoonal rivers, *J. Geophys. Res. Biogeosci.*, 120, 2067–2080, 2015.

672

673 Kumar, R., Singh, R. D., and Sharma, K. D.: Water resources of India, *Curr. Sci.*, 89, 794–811,  
674 2005.

675

676 Land, L. S.: The isotopic and trace element geochemistry of dolomite: the state of the art.  
677 *Concepts and Models of Dolomitization*, 63, 485, doi:10.2110/pec.80.28.0087, 1980.

678

679 Landi, A., Mermut, A. R., and Anderson, D. W.: Origin and rate of pedogenic carbonate  
680 accumulation in Saskatchewan soils, Canada. *Geoderma* 117, 143–156, 2003.



681  
682 Lerman, A., Wu, L. L., and Mackenzie, F. T.: CO<sub>2</sub> and H<sub>2</sub>SO<sub>4</sub> consumption in weathering and  
683 material transport to the ocean, and their role in the global carbon balance, Mar. Chem., 106,  
684 326–350, 2007.

685  
686 Li, S.-L., Calmels, D., Han, G., Gaillardet, J. and Liu, C.-Q.: Sulfuric acid as an agent of  
687 carbonate weathering constrained by  $\delta^{13}\text{C}_{\text{DIC}}$ : examples from Southwest China, Earth Planet. Sci.  
688 Lett., 270, 189–199, 2008.

689  
690 Ludwig, W., Amiotte-Suchet, P., Munhoven, G., and Probst, J. L.: Atmospheric CO<sub>2</sub> consumption  
691 by continental erosion: present-day controls and implications for the last glacial maximum.  
692 Global Planet Change, 17, 107–120, 1998.

693  
694 Mackenzie, F. T., Lerman, A., and Andersson, A. J.: Past and present of sediment and carbon  
695 biogeochemical cycling models. Biogeosciences 1, 11–32, 2004.

696  
697 Madhupratap, M., Prasanna Kumar, S., Bhattathiri, P. M. A., Kumar, M. D., Raghukumar, S.,  
698 Nair, K. K. C., and Ramaiah, N.: Mechanism of the biological response to winter cooling in the  
699 northeastern Arabian Sea, Nature, 384, 549–552, 1996.

700  
701 Maher, D. T., Cowley, K., Santos, I. R., Macklin, P., and Eyre, B. D.: Methane and carbon  
702 dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated *in situ*  
703 radioactive and stable isotope measurements, Mar. Chem., 168, 69–79,  
704 doi:10.1016/j.marchem.2014.10.017, 2015.

705  
706 Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J., and Eyre, B. D.: Groundwater-derived  
707 dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing  
708 mangrove carbon sink?, Limnol. Oceanogr., 58, 475–488, 10.4319/lo.2013.58.2.0475, 2013.

709  
710 Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V., Hedges, J. I., Quay, P. D.,  
711 Richey, J. E., and Brown, T. A.: Young organic matter as a source of carbon dioxide out gassing  
712 from Amazonian Rivers, Nature, 436, 538–541, 2005.

713  
714 McConaughey, T. A., LaBaugh, J. W., Rosenberry, D. O., Striegl, R. G., Reddy, M. M.,  
715 Schuster, P. F., and Carter, V.: Carbon budget for a groundwater-fed lake: calcification supports  
716 summer photosynthesis, Limnol. Oceanogr., 39, 1319–1332, 1994.

717  
718 Meybeck, M., and Ragu, A.: GEMS/water contribution to the Global Register of River Inputs  
719 (GLORI), Provisional Final Rep., 245 pp., UNEP/WHO/UNESCO, Geneva, Switzerland, 1995.

720  
721 Meybeck, M., and Ragu, A.: River discharges to the oceans. An assessment of suspended solids,  
722 major ions, and nutrients, Environ. Inf. and Assess. Rep., 250, 1996.

723  
724 Meybeck, M., and Vorusmarty, C. J.: Global transfer of carbon by rivers, Global Change News  
725 Lett., 37, 41974, 1999.

726



727 Meybeck, M.: Global chemical weathering of surficial rocks estimated from river dissolved  
728 loads, *Am. J. Sci.*, 287, 401–428, 1987.

729

730

731 Meybeck, M.: Riverine Transport of atmospheric carbon-sources, global typology and budget.  
732 *Water Air Soil Pollut.*, 70, 443–463, 1993.

733

734 Mukhopadhyay, S. K., Biswas, H., De, T. K., Sen, S., and Jana, T. K.: Seasonal effects on the  
735 air–water carbon dioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India. *J  
736 Environ Monit.*, 4, 549–552, 2002.

737

738 Muraleedharan, P. M., and Prasanna Kumar, S.: Arabian Sea upwelling—A comparison between  
739 coastal and open ocean regions, *Curr. Sci.*, 71, 842–846, 1996.

740

741 O’Leary, M. H.: Carbon Isotopes in Photosynthesis, *BioScience*, 38, 328–336, doi:  
742 10.2307/1310735, 1988.

743

744 Opsahl, S. P. and Zepp, R. G.: Photochemically-induced alteration of stable carbon isotope ratios  
745 ( $\delta^{13}\text{C}$ ) in terrigenous dissolved organic carbon, *Geophys. Res. Lett.*, 28, 2417–2420,  
746 doi:10.1029/2000gl012686, 2001.

747

748 Parker, S. R., Poulson, S. R., Gammons, C. H., and DeGrandpre, M. D.: Biogeochemical  
749 controls on diel cycling of stable isotopes of dissolved  $\text{O}_2$  and dissolved inorganic carbon in the  
750 Big Hole River, Montana, *Environ. Sci. Tech.*, 39, 7134–7140, doi:10.1021/es0505595, 2005.

751

752 Parker, S. R., Poulson, S. R., Smith, M. G., Weyer, C. L., and Bates, K. M.: Temporal variability  
753 in the concentration and stable carbon isotope composition of dissolved inorganic and organic  
754 carbon in two Montana, USA Rivers, *Aquat Geochem.*, 16, 61–84, doi:10.1007/s10498-009-  
755 9068-1, 2010.

756

757 Pattanaik, J. K., Balakrishnan, S., Bhutani, R. and Singh, P.: Estimation of weathering rates and  
758  $\text{CO}_2$  drawdown based on solute load: Significance of granulites and gneisses dominated  
759 weathering in the Kaveri River basin, Southern India, *Geochim. Cosmochim. Acta*, 121, 611–  
760 636, 2013.

761

762 Pattanaik, S., Sahoo, R. K., Satapathy, D. R., Panda, C. R., Choudhury, S. B. et al.: Intra-annual  
763 Variability of  $\text{CO}_2$  Flux in the Mahanadi Estuary- A Tropical Estuarine System, India. *Ann Mar  
764 Sci.*, 1, 005–012, 2017.

765

766 Prasanna Kumar, S., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah, N., de Souza, S.  
767 N., Sardesai, S., and Madhupratap, M.: Why is the Bay of Bengal less productive during summer  
768 monsoon compared to the Arabian Sea?, *Geophys. Res. Lett.*, 29, 2235,  
769 doi:10.1029/2002GL016013, 2002.

770



771 Quynh, L.P.T., Binh, P.T.X., Thuy, D.T., Nghia, L.D., and Cuong, H.T.: Relationship of  
772 dissolved inorganic carbon (DIC) concentrations with some environmental variables in the Red  
773 River water in the period 2008 – 2015, *J. Viet. Env.*, 8, 102-106, 2016.

774

775 Raymond, P. A. et al.: Global carbon dioxide emissions from inland waters, *Nature*, 503, 355–  
776 359, doi:10.1038/nature12760, 2013.

777

778 Raymond, P. A., and Cole, J. J.: Increase in the export of alkalinity from North America's largest  
779 river, *Science*, 301, 88–91, doi:10.1126/science.1083788, 2003.

780

781 Raymond, P. A., and Oh, N.-H.: An empirical study of climatic controls on riverine C export  
782 from three major U.S. watersheds, *Global Biogeochem. Cycles*, 21, GB2022,  
783 doi:10.1029/2006GB002783, 2007.

784

785 Raymond, P. A., Oh, N. H., Turner, R. E., and Broussard, W.: Anthropogenically enhanced  
786 fluxes of water and carbon from the Mississippi River, *Nature*, 451, 449–452,  
787 doi:10.1038/Nature06505, 2008.

788

789 Raymond, P.A., and Bauer, J.: Atmospheric CO<sub>2</sub>evasion, dissolved inorganic carbon production,  
790 and net heterotrophy in the York River estuary, *Limnol.Oceanogr.*, 45, 1707-1717, 2000.

791 Regnier, P., et al.: Anthropogenic perturbation of the carbon fluxes from land to ocean, *Nat.*  
792 *Geosci.*, 6, 597–607, doi:10.1038/ngeo1830, 2013.

793

794 Ren, W., Tian, H., Tao, B., Yang, J., Pan, S., Cai, W.-J., Lohrenz, S. E., He, R., and Hopkinson,  
795 C. S.: Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of  
796 Mexico due to climatic and anthropogenic changes over the 21st century, *J. Geophys. Res.*  
797 *Biogeosci.*, 120, 724–736, doi:10.1002/2014JG002761, 2015.

798

799 Rengarajan, R., and Sarma, V. V. S. S.: Submarine groundwater discharge and nutrient addition  
800 to the coastal zone of the Godavari estuary, *Mar. Chem.*, 172, 57-69, 2015.

801

802 Samanta, S., Dalai, T. K., Pattanai K. J. K., Rai, S. K., and Mazumdar, A.: Dissolved inorganic  
803 carbon (DIC) and its  $\delta^{13}\text{C}$  in the Ganga (Hooghly) River estuary, India: Evidence of DIC  
804 generation via organic carbon degradation and carbonate dissolution. *Geochim.Cosmochim.Acta*,  
805 165, 226–248, 2015.

806

807 Sarma, V. V. S. S., et al.: Emission of carbon dioxide from the Indian monsoonal estuaries,  
808 *Geophys. Res. Lett.*, 39, L03602, doi:10.1029/2011GL050709, 2012.

809

810 Sarma, V. V. S. S., et al.: High CO<sub>2</sub> emissions from the tropical Godavari estuary (India)  
811 associated with monsoon river discharges, *Geophys. Res. Lett.*, 38, L08601,  
812 doi:10.1029/2011GL046928, 2011.

813



814 Sarma, V. V. S. S., Kumar, M. D., and Manerikar, M.: Emission of carbon dioxide from a  
815 tropical estuarine system, Goa, India, *Geophys. Res. Lett.*, 28, 1239–1242,  
816 doi:10.1029/2000GL006114, 2001.  
817

818 Sarma, V. V. S. S., Krishna, M. S., Prasad, V. R., Kumar, B. S. K., Naidu, S. A., Rao, G. D.,  
819 Viswanadham, R., Sridevi, T., Kumar, P. P., and Reddy, N. P. C.: Distribution and sources of  
820 particulate organic matter in the Indian monsoonal estuaries during monsoon, *J. Geophys. Res.*  
821 *Biogeosci.*, 119, doi:10.1002/2014JG002721, 2014.  
822

823 Shanley, J. B., Kendall, C., Smith, T. E., Wolock, D. M., and McDonnell, J. J.: Controls on old  
824 and new water contributions to stream flow at some nested catchments in Vermont, USA,  
825 *Hydrol. Process.*, 16, 589–609, 2002.  
826

827 Shetye, S. R., Gouveia, A. D., Shenoi, S. S. C.: Circulation and water masses of the Arabian Sea,  
828 *Proc. Indian Acad. Sci. Earth Planet. Sci.*, 103, 107–123, 1994.  
829

830 Shin, W. J., Chung, G. S., Lee, D., and Lee, K. S.: Dissolved inorganic carbon export from  
831 carbonate and silicate catchments estimated from carbonate chemistry and  $\delta^{13}\text{C}_{\text{DIC}}$ . *Hydrol. Earth*  
832 *Syst. Sci.*, 15, 2551 – 2560, 2011.  
833

834 Singh, S.K., Sarin, M.M., and France-Lanord, C.: Chemical erosion in the eastern Himalaya:  
835 Major ion composition of the Brahmaputra and  $^{13}\text{C}$  of dissolved inorganic carbon. *Geochim. Cosmochim. Acta*, 69, 3573-3588, 2005.  
837

838 Smith S. L.: Understanding the Arabian Sea: reflections on the 1994–1996 Arabian Sea  
839 expedition, *Deep Sea Res. Part II* 48, 1385–1402, 2001.  
840

841 Solomon, D. K., and Cerling, T. E.: The annual carbon dioxide cycle in a montane soil:  
842 observations, modeling and implications for weathering, *Water Resources Res.*, 23, 2257-2265,  
843 1987.  
844

845 Soman, M. K., and Kumar, K. K.: Some aspects of daily rainfall distribution over India during  
846 the southwest monsoon season, *Int. J. Clim.*, 19, 299–311, 1990.  
847

848 Sreenivas, K., Dadhwal, V. K., Suresh, K., Sri Harsha, G., Tarik, M., Sujatha, G., Suresh, J. R.,  
849 G., Fyze, M., and Ravisankar, T.: Digital mapping of soil organic and inorganic carbon status in  
850 Indi, *Geoderma*, 269, 160-173, 10.1016/j.geoderma.2016.02.002, 2016.  
851

852 Sridevi, B., Sarma, V.V.S.S., Murty, T.V.R., Sadhuram, Y., Reddy, N.P.C., Vijayakumar, K.,  
853 Raju, N.S.N., Jawahar Kumar, Ch., Raju, Y.S.N., Luis, R., Kumar, M.D., Prasad, K.V.S.R. :  
854 Variability in stratification and flushing times of the Gautami–Godavari estuary, India, *J. Earth*  
855 *Sys., Sci.*, 124, 993-1003, 2015.  
856



857 Stevenson, B. A., Kelly, E. F., McDonald, E. V., and Busacca, A. J.: The stable carbon isotope  
858 composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the  
859 Palouse region, Washington State, USA. *Geoderma*, 124, 37–47, 2005.

860

861 Subramanian, V.: Sediment load of Indian rivers, *Curr. Sci.*, 64, 928–930, 1993.

862

863 Suzuki, R., and Ishimaru, T.: An improved method for the determination of phytoplankton  
864 chlorophyll using N,N-dimethyl formamide, *J. Oceanogr.*, 46, 190–194, 1990.

865

866 Tambooh, F., Borges, A. V., Meysman, F. J. R., Meersche, K. V. D., Dehairs, F., Merckx, R. et  
867 al.: Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River Basin,  
868 Kenya, *Biogeosciences Discuss.*, 10, 5175–5221, 2013.

869

870 Tamse, S., Ogrinc, N., Walter, L. M., Turk, D., and Faganeli, J.: River Sources of Dissolved  
871 Inorganic Carbon in the Gulf of Trieste (N Adriatic): Stable Carbon Isotope Evidence, *Estuaries*  
872 and Coasts, DOI 10.1007/s12237-014-9812-7, 2014.

873

874 Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., and Stephen, M. L.: A review  
875 of allochthonous organic matter dynamics and metabolism in streams, *J. North Am. Benthol.*  
876 Soc., 29, 118–146, doi:10.1899/08-170.1, 2010.

877

878 Telmer, K., Veizer, J.: Carbon fluxes,  $p\text{CO}_2$  and substrate weathering in a large northern river  
879 basin, Canada: carbon isotope perspectives, *Chem. Geol.*, 159, 61–86, 1999.

880

881 Vähäalto, A. V., and Wetzel, R. G.: Long-term photochemical and microbial decomposition of  
882 wetland-derived dissolved organic matter with alteration of  $^{13}\text{C} : ^{12}\text{C}$  mass ratio, *Limnol.*  
883 *Oceanogr.*, 53, 1387–1392, doi:10.4319/lo.2008.53.4.1387, 2008.

884

885 Varkey, M. J., Murty, V. S. N., and Suryanarayana, A.: Physical oceanography of the Bay of  
886 Bengal and Andaman Sea, *Oceanogr. Mar. Biol.*, 34, 1–70, 1996.

887

888 Viers, J., Dupre, B., Polve, M., Schott, J., Dandurand, J.-L., and Braun, J.-J.: Chemical weathering  
889 in the drainage basin of a tropical watershed (Nsimi-Zoetele site, Cameroon): comparison  
890 between organic-poor and organic-rich waters. *Chem. Geol.*, 140, 181–206, 1997.

891

892 Viers, J., Oliva, P., Dandurand, J. L., Dupré, B., Gaillardet, J., Heinrich, D. H., and Karl, K. T.:  
893 Chemical weathering rates,  $\text{CO}_2$  consumption, and control parameters deduced from the  
894 chemical composition of Rivers, *Treatise on Geochemistry* Pergamon, Oxford, 2007.

895

896 Vijith, V., Sundar, D., and Shetye, S. R.: Time-dependence of salinity in monsoonal estuaries,  
897 *Estuar. Coast. Shelf Sci.*, 85, 601–608, doi:10.1016/j.ecss.2009.10.003, 2009.

898

899 Waldron, S., Hall, A. J., and Fallick, A. E.: Enigmatic stable isotope dynamics of deep peat  
900 methane, *Glob. Biogeochem. Cy.*, 13, 93–100, doi:10.1029/1998gb900002, 1999.

901



902 Waldron, S., Scott, E. M., and Soulsby, C.: Stable isotope analysis reveals lower-order river  
903 dissolved inorganic carbon pools are highly dynamic, *Environ. Sci. Technol.*, 41, 6156–6162,  
904 doi:10.1021/es0706089, 2007.

905

906 Wang, J. P., Wang, X. J., Zhang, J., and Zhao, C. Y.: Soil organic and inorganic carbon and  
907 stable carbon isotopes in the Yanqi Basin of northwestern China, *Eur. J. Soil Sci.*, 66, 95–103,  
908 2015.

909

910 Wang, Z. A., Bienvenu, D.J., Mann, P.J., Hoering, K.A. Poulsen, J.R., Spencer, R.G.M., and  
911 Holmes, R.M.: Inorganic carbon speciation and fluxes in the Congo River, *Geophys. Res. Lett.*,  
912 40, 511–516, 2013.

913

914 Williamson, C. E., Zagarese, H. E., Schulze, P. C., Hargreaves, B. R., and Seva, J.: The impact  
915 of short-term exposure to UV-B radiation on zooplankton communities in north temperate lakes,  
916 *J. Plankton Res.*, 16, 205–218, doi:10.1093/plankt/16.3.205, 1994.

917

918 Yang, C., Telmer, K., and Veizer, J.: Chemical dynamics of the “St. Lawrence” riverine system:  
919  $\delta\text{D}_2\text{O}$ ,  $\delta^{18}\text{O}_{\text{H}_2\text{O}}$ ,  $\delta^{13}\text{C}_{\text{DIC}}$ ,  $\delta^{34}\text{S}$ sulfate, and dissolved  $^{87}\text{Sr}/^{86}\text{Sr}$ , *Geochim. Cosmochim. Acta*, 60,  
920 851–866, 1996.

921

922 Zeng, F- W., Masiello C. A., and Hockaday, W. C.: Controls on the origin and cycling of  
923 riverine dissolved inorganic carbon in the Brazos River, Texas, *Biogeochemistry*, 104, 275–291,  
924 doi:10.1007/s10533-010-9501-y, 2011.

925

926 Zeng, J., Guo, T. W., Bao, G. X., Wang, Z., and Sun, J. H.: Effects of soil organic carbon and  
927 soil inorganic carbon under long-term fertilization, *Soil and Fertilizer Sciences in China* 2, 11–  
928 14, 2008.

929

930 Zou, J.: Sources and Dynamics of Inorganic Carbon within the Upper Reaches of the Xi River  
931 Basin, Southwest China, *PLoS One*, 11, e0160964. doi:10.1371/journal.pone.0160964, 2016.

932

933

934

935

936 **Figure 1:** Map showing the study region. Estuaries of the rivers sampled in this study were  
937 indicated by solid black line.

938

939 **Figure 2:** Concentration ( $\text{mg l}^{-1}$ ), export flux ( $\text{Tg yr}^{-1}$ ) and yield ( $\text{g m}^{-2} \text{ yr}^{-1}$ ) of dissolved  
940 inorganic carbon (DIC) in the Indian monsoonal estuaries. Estuaries geographically located in  
941 the northeastern (NE), southeastern (SE), southwestern (SW) and northwestern (NW) regions of  
942 India were also shown. Estuaries draining into the Bay of Bengal and the Arabian Sea were also  
943 provided

944

945 **Figure 3:** Spatial variability in stable carbon isotopes of dissolved inorganic carbon ( $\delta^{13}\text{C}_{\text{DIC}}$ , ‰)  
946 in the Indian monsoonal estuaries during discharge period.



947 **Figure 4:** (a) Positive correlation between dissolved inorganic carbon (DIC) concentration and  
948 catchment area, and (b) negative correlation between DIC concentrations and annual mean  
949 discharge ( $\text{km}^3$ ) of the minor rivers.

950

951 **Figure 5:** Inverse correlation between mean dissolved inorganic carbon concentration in  
952 estuaries (DIC,  $\text{mg l}^{-1}$ ) and annual mean rainfall (mm) in catchments of the rivers in the NE, NW,  
953 SE and SW regions of India.

954

955 **Figure 6:** Significant positive correlation between stable carbon isotopes of dissolved inorganic  
956 carbon ( $\delta^{13}\text{C}_{\text{DIC}}$ , ‰) and salinity in the Indian monsoonal estuaries during the study period.

957 **Figure 7:** Significant positive correlation between stable carbon isotopes of dissolved inorganic  
958 carbon ( $\delta^{13}\text{C}_{\text{DIC}}$ , ‰) and concentrations of DIC in the Indian monsoonal estuaries (filled  
959 diamonds), SW estuaries (filled squares) and high saline estuaries (hollow triangles) during the  
960 study period.

961

962 **Figure 8:** Relationship of dissolved inorganic carbon (DIC) yield ( $\text{g m}^{-2} \text{ yr}^{-1}$ ) with that of (a)  
963 rainfall (mm) and (b) soil organic carbon ( $\text{kg ha}^{-1}$ ) in the catchment area of the NE, NW, SE and  
964 SW rivers

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

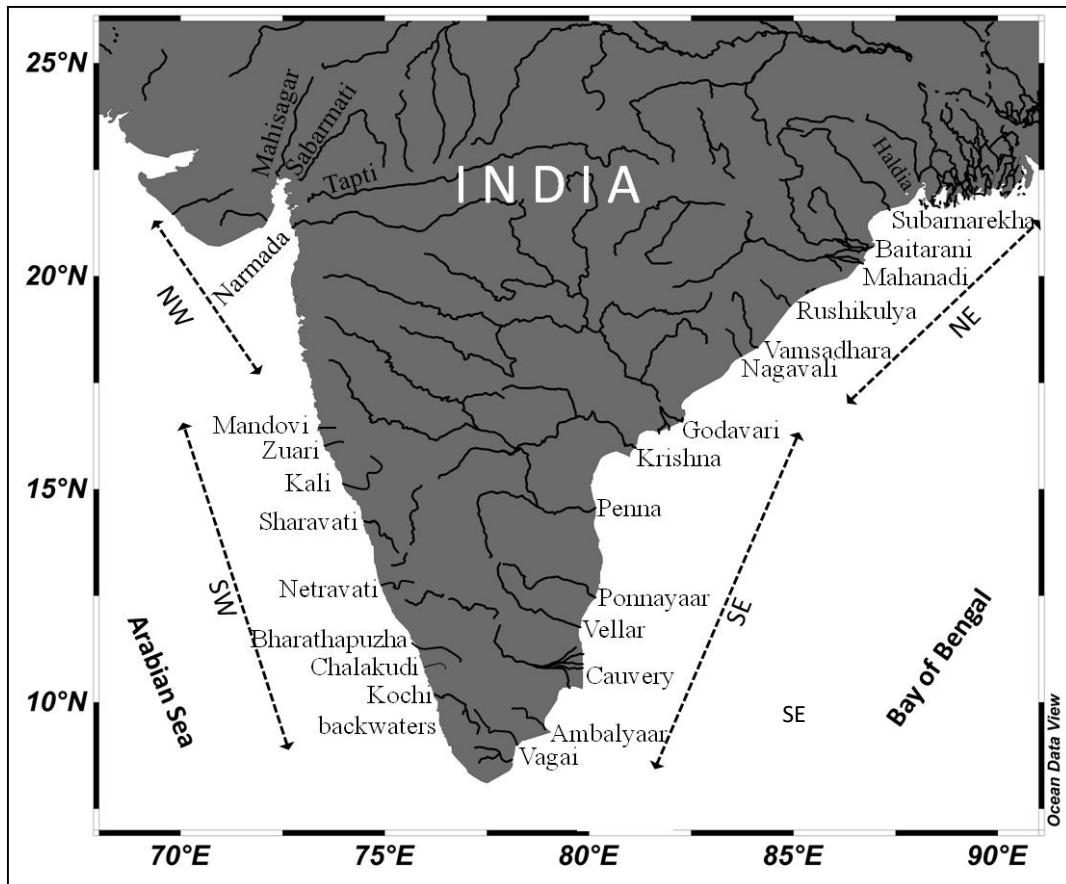
983

984

985

986

987


988

989

990

991

992



993 Fig.1:

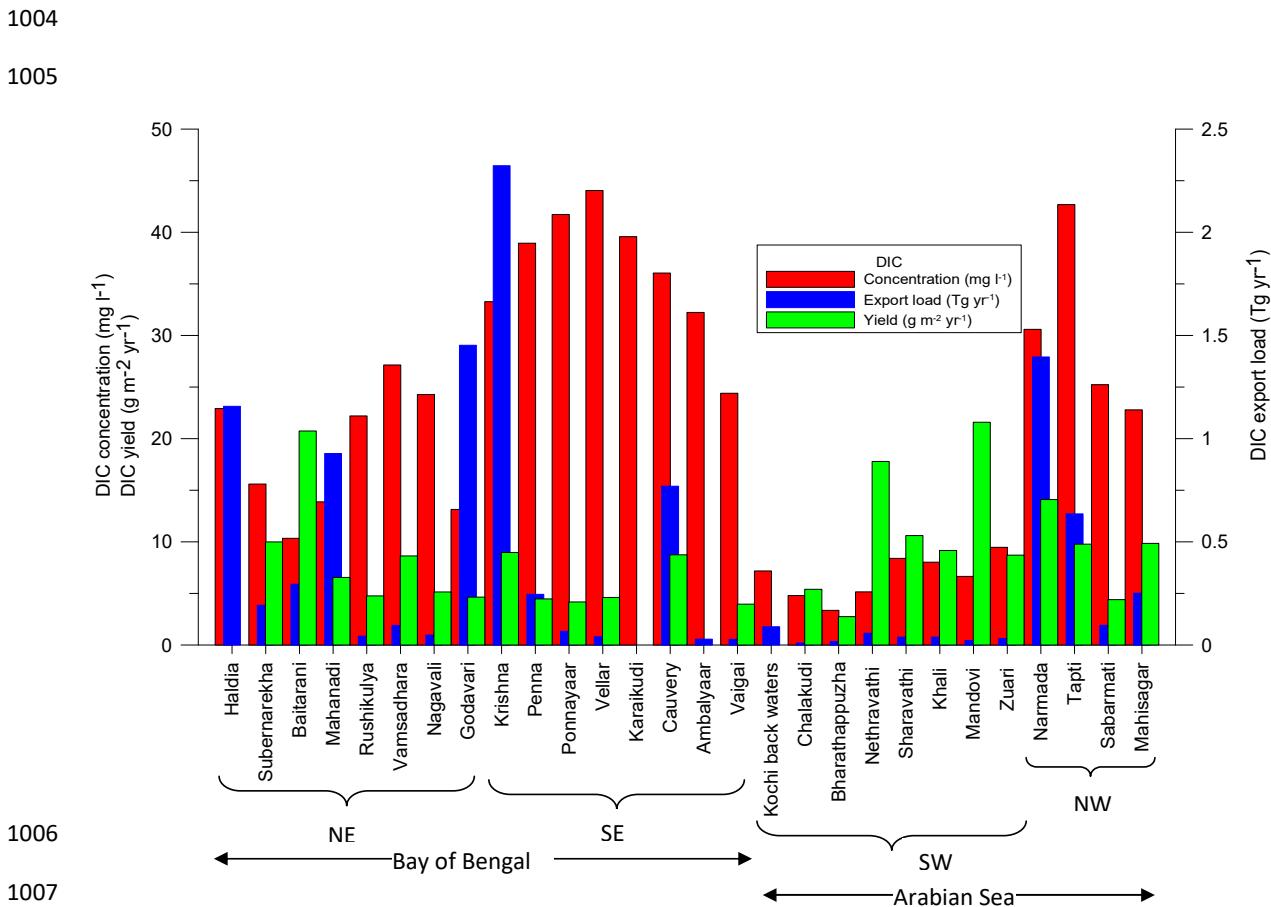
994

995

996

997

998


999

1000

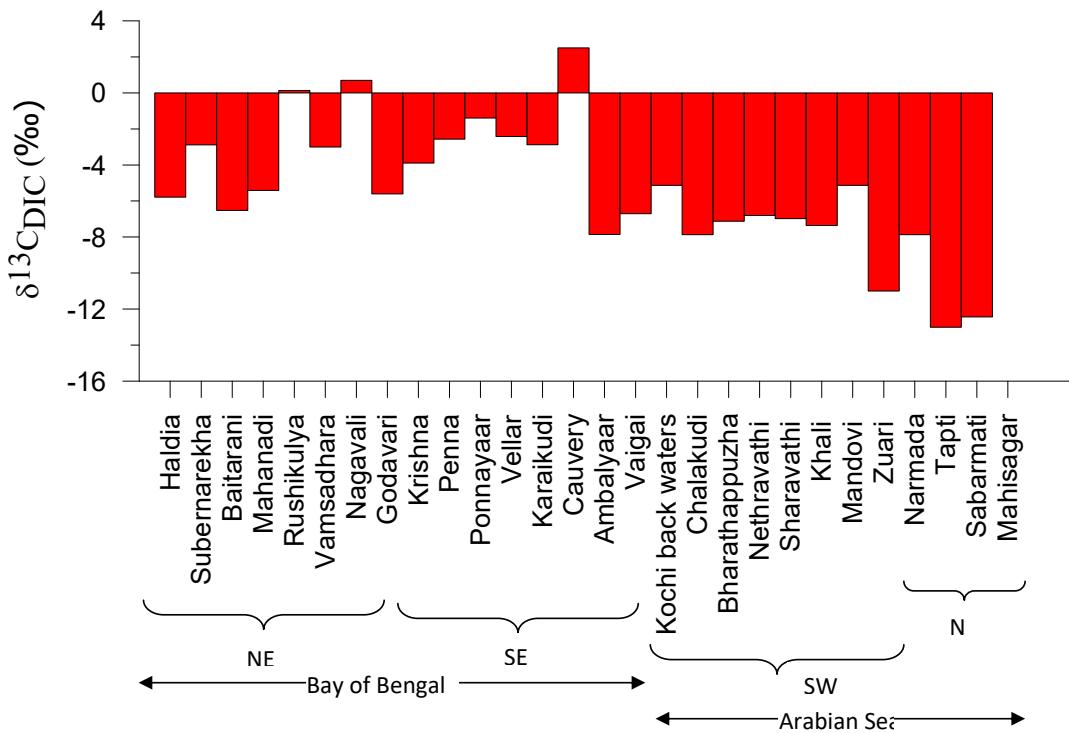
1001

1002

1003



1008 Fig. 2


1009

1010

1011

1012

1013



1018 Fig. 3:

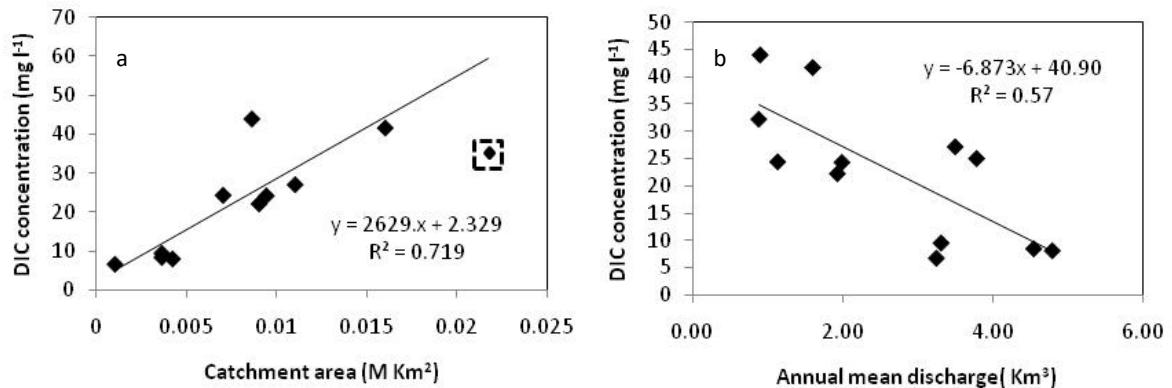
1019

1020

1021

1022

1023


1024

1025

1026

1027

1028



1029

1030

Fig. 4:

1031

1032

1033

1034

1035

1036

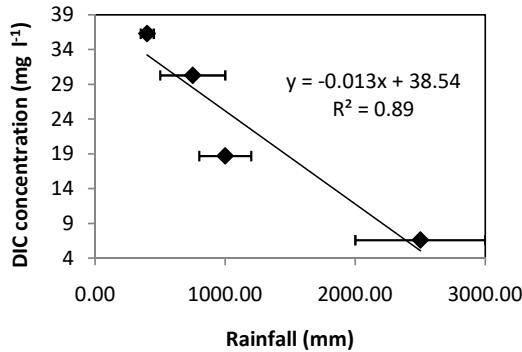
1037

1038

Fig. 5:

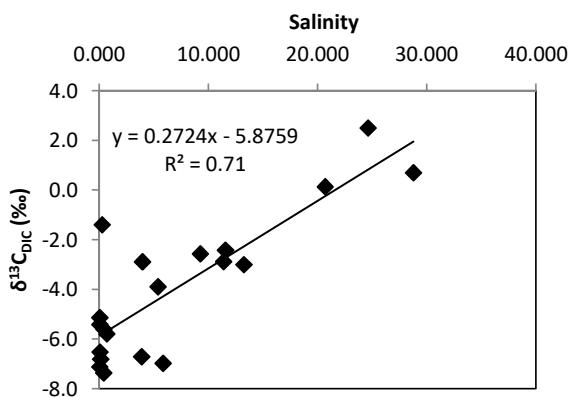
1039

1040


1041

1042

1043


1044

1045



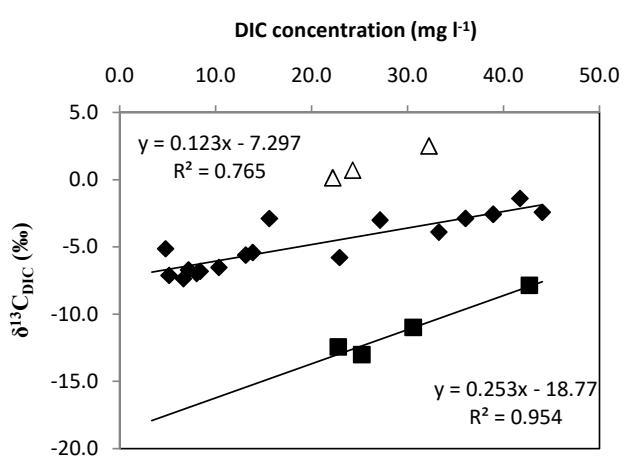

1046

Fig. 6:





1047



1048

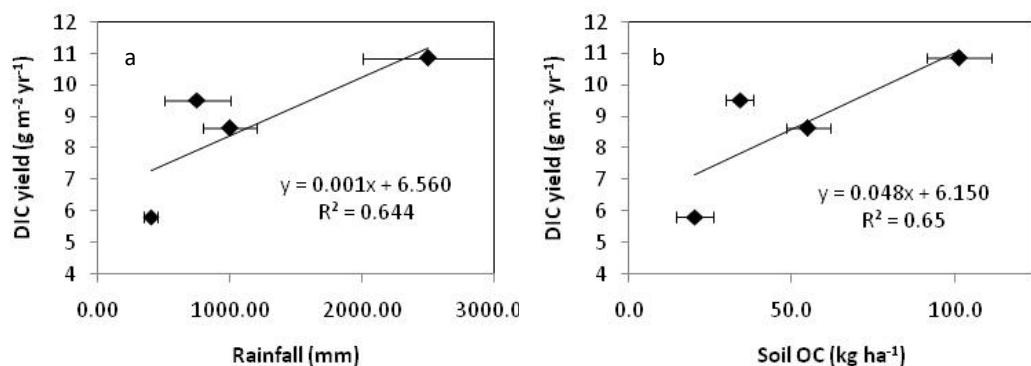
1049

1050

1051

1052

1053


1054

1055

1056

Fig. 7:

1057



1058

1059

Fig. 8:

1061

1062