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Abstract.  Rivers are strong source of dissolved inorganic carbon (DIC) to the adjacent coastal 10 

waters.  In order to identify the major sources of DIC in the Indian monsoonal estuaries and their 11 

export flux to the north Indian Ocean, 27 major and medium estuaries along the Indian coast 12 

were sampled during discharge period.  An order of magnitude variability in DIC concentrations 13 

was found within the Indian estuaries sampled (3.4 - 44.1mg l-1) due to significant variability in 14 

the size of rivers, precipitation pattern and lithology in the catchments.  Dilution with high 15 

precipitation (2500±500 mm) and exchange with ground waters of low DIC resulted in very low 16 

concentrations of DIC in estuaries located in the southwest of India (6.6±2.1 mg l-1) than the 17 

estuaries located in the southeast (36.3±6.3 mg l-1), northwest (30.3±8.9 mg l-1) and northeast 18 

(19.5±6.2 mg l-1) regions of India.  Though the range of stable carbon isotopes of DIC (δ13CDIC) 19 

indicates that DIC is largely contributed by weathering of silicate and carbonate minerals, 20 

however, the storage of water in dams/reservoirs and intrusion of marine waters caused the 21 

enrichment in stable carbon isotopic composition of DIC (δ13CDIC).  It is estimated that the Indian 22 

monsoonal estuaries annually export ~10.4 Tg (1Tg=1012 g) of DIC to the northern Indian 23 

Ocean, of which the major fraction (74.2%) enters into the Bay of Bengal and the remaining 24 

reaches to the Arabian Sea.  It is mainly due to the fact that the Bay of Bengal receives ~378 km3 25 

yr-1 of freshwater from the catchment area of about 0.96 million km-2, whereas the Arabian Sea 26 

receives only 122 km3 yr-1 of freshwater from the catchment area of only 0.23 million km2.  27 
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Though the discharge from the Indian monsoonal rivers account for only 1.3% of global 28 

freshwater discharge, they disproportionately export 2.5% of the total DIC export by the world 29 

major rivers and 9.4% of the Asian rivers to oceans.  The yield of DIC was found to be higher in 30 

the SW estuaries (10.8±6.6 g m-2 yr-1) than the other estuaries though they export only 0.3 Tg yr-1 31 

of DIC, which is more than an order of magnitude lower than the export by the NE (4.2 Tg yr-1) 32 

and SE estuaries (3.5 Tg yr-1), due to intense precipitation, favorable natural vegetation and 33 

tropical wet climate, high soil organic carbon and dominance of red loamy soils in catchments of 34 

the SW rivers.  This study, therefore, reveals that significant variability in the lithology and 35 

hydrological and environmental conditions over the catchments strongly controls the 36 

concentrations and yield of DIC from the Indian monsoonal estuaries.    37 

Keywords: dissolved inorganic carbon, export flux, Indian rivers, Bay of Bengal, Arabian Sea, 38 

North Indian Ocean 39 

1. Introduction 40 

Dissolved inorganic carbon (DIC) is the major constituent of carbon species and accounts 41 

for ~38% of the total fluvial carbon transport to the global oceans (Meybeck, 1993; Cai, 2011; 42 

Jarvie et al., 2017). World major river systems export annually about 33-400 Tg (1Tg=1012g) of 43 

DIC to the global oceans (Ludwig et al., 1998; Mackenzie et al., 2004; Lerman et al., 2007).  44 

Chemical weathering of carbonate and silicate rocks and soils, and exchange with the ground 45 

water in the basin are the major sources of DIC into rivers (Meybeck, 1987; Gaillardet et al., 46 

1999, Dessert et al., 2001; Viers et al., 2007; Raymond et al., 2008; Tamooh et al., 2013), 47 

besides in-stream processes, such as oxidation of organic carbon by heterotrophic bacteria 48 

(Mayogra et al., 2005; Battin et al., 2008; Hotchkiss et al., 2015; Samantha et al. 2015; Zou, 49 

2016) and dissolution of atmospheric carbon dioxide (CO2).  Weathering of carbonate and 50 
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silicate rocks in the catchment, and uptake of DIC by aquatic plants and algae during 51 

photosynthesis reaction in rivers are the sinks of the atmospheric CO2 (e.g. Berner et al., 1983; 52 

Raymond et al., 2008), while the oxidation of organic carbon is the source of CO2 to the 53 

atmosphere. DIC in rivers and estuaries is therefore strongly linked to the carbon cycle.  54 

However, due to human interferences, DIC fluxes from the world major rivers have been found 55 

to increase dramatically in the last century, for example, Mississippi (Cai, 2003; Raymond and 56 

Cole, 2003; Raymond et al., 2008; Ren et al., 2015).  It has been noted that substantial alterations 57 

in DIC lateral transport occurred from land to sea after the industrialization (Regnier et al., 2013; 58 

Bauer et al., 2013).  The increase in riverine DIC flux was reported to have a significant impact 59 

on the chemical composition (Williamson et al., 1994; Raymond and Cole, 2003; Findlay, 2010; 60 

Tank et al., 2010) and carbon budget in the coastal waters (Cole et al., 2007; Dhillon and 61 

Inamdar, 2013). Thus, identification of major sources of DIC and its riverine export flux 62 

estimates to the coastal oceans are important for better understanding the carbon cycling and its 63 

budget on both regional and global scales (Campeau et al., 2017).  64 

 Fluvial carbon fluxes from rivers in the tropical region (30o N to 30oS) is critical for 65 

global carbon budgets because they contribute significant fraction of global DIC (48-64%), 66 

freshwater discharge (66.2%) and suspended sediment load (73.2%) to the world oceans, despite 67 

they occupy only ~43% of world’s land area (Huang et al., 2012). Further, humid tropical 68 

climate in the region supports the export of more fluvial carbon fluxes from the continental land 69 

masses than the other climates in the world (Meybeck 1993; Ludwig et al., 1998).  However, 70 

DIC fluxes from rivers in this region were not included in estimating the fluvial carbon fluxes to 71 

global oceans due to the paucity of data.  72 
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Numerous studies have been documented on DIC export flux from the world major 73 

rivers, for example, Mississippi (Raymond and Cole, 2003; Raymond et al., 2008; Cai et al., 74 

2008), Changjiang and Pearl (Cai et al., 2008), Congo (Wang et al., 2013) and large river 75 

systems in the world (e.g. Gaillardet et al., 1999; Raymond et al., 2013).  Although some 76 

measurements were carried out on DIC in the Indian estuaries, for example, Mandovi and Zuari 77 

(Sarma et al., 2001), Godavari estuary (Sarma et al., 2011), Cochin (Gupta et al., 2009; Bhavya 78 

et al., 2016), Hooghly (Mukhopadhyay et al., 2002; Samanta et al., 2015), Mahanadi (Pattanaik 79 

et al., 2017) and Indian estuaries (Sarma et al., 2012), however, they focused only on air-water 80 

exchange of CO2.  Nevertheless, no estimations on DIC export fluxes to the north Indian Ocean 81 

from the Indian subcontinent have been made so far.  For the first time, we made an effort here 82 

to identify the major sources of DIC in the Indian monsoonal estuaries and to estimate their 83 

export fluxes to the north Indian Ocean. The main objectives of this study are to (i) identify the 84 

major sources and (ii) examine the potential reasons responsible for variability in concentrations 85 

of DIC in the Indian monsoonal estuaries during the discharge (wet) period, and (iii) estimate the 86 

DIC export fluxes to the north Indian Ocean by the Indian monsoonal rivers. 87 

2. Study region and Sampling  88 

2.1 Study Area 89 

 The Indian peninsula bifurcate the north Indian Ocean into the Bay of Bengal and the 90 

Arabian Sea.  Although these two basins occupies the same latitudinal belt, their oceanographic 91 

processes were reported to be remarkably different and attributed to significant differences in the 92 

freshwater influx and associated physical and biological changes (Gauns et al., 2005). This is 93 

because the glacial and peninsular rivers transport 1.63 x 1012 m3 yr-1 of freshwater to the Bay of 94 

Bengal (Subramanian, 1993) whereas only 0.3x1012 m3 yr-1 to the Arabian Sea.  The large 95 
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freshwater influx leads to formation of a strong vertical salinity stratification (Varkey et al., 96 

1996), which results in the suppression of vertical mixing of nutrient rich sub-surface water with 97 

that of surface, makes the Bay of Bengal relatively less productive (Prasannakumar et al., 2002) 98 

than the Arabian Sea, which is one of the highly productive zones in the world (Madhupratap et 99 

al., 1996; Smith, 2001; Barber et al., 2001) due to injection of nutrients into surface through the 100 

seasonal upwelling and convective mixing (Shetye et al., 1994; Madhupratap et al., 1996; 101 

Muraleedharan and Prasannakumar, 1996).  102 

 Discharge from the Indian peninsular rivers is fed by the monsoon induced precipitation 103 

over the Indian subcontinent, which receives >80% of its annual rainfall during the southwest 104 

(SW) monsoon period (June-September) (Soman and Kumar, 1990). Though some amount of 105 

rainfall occurs during the NE monsoon (December-March), it will not generate discharge as it 106 

will be stored in dams and reservoirs for domestic, industrial and irrigation purposes.  Discharge 107 

from the Indian peninsular rivers is therefore occurs only during the SW monsoon season (Vijith 108 

et al., 2009; Sridevi et al., 2015) and hence, termed as monsoonal rivers.  Since the freshwater 109 

discharge from the Indian monsoonal rivers is limited to only few months (June – October) in a 110 

year, unlike the European and American rivers, the entire estuary may be filled with freshwater 111 

without any vertical salinity gradient (Vijith et al., 2009; Sridevi et al., 2015) during this period.  112 

As virtually there is no discharge during the dry period, the discharge during SW monsoon (wet 113 

period) is equivalent to the annual discharge from the monsoonal rivers. Based on the rainfall 114 

intensity, forest cover, vegetation and soil type in the catchment, estuaries sampled in the present 115 

study were  categorized into 4 groups, namely the northeast (NE), southeast (SE), southwest 116 

(SW) and northwest (NW) estuaries of India (Fig. 1).  The SW region of India is characterized 117 

by the intense rainfall during the SW monsoon (~3000 mm) following the NE (1000-2500 mm), 118 
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SE (300-500 mm) and NW (200-500 mm) regions of India (Soman and Kumar, 1990). The SW 119 

rivers drain red loamy soils while the NW rivers drain black soils.  The rivers reaching the Bay 120 

of Bengal (NE and SE estuaries) drain the red loamy and alluvial soils in their upper and lower 121 

catchments respectively, except the major rivers Godavari and Krishna, which also drain black 122 

soils in their upper catchment along with red loamy and alluvial soils in their middle and lower 123 

catchments (Geological Survey of India; www. gsi.gov.in). Based on the discharge, monsoonal 124 

estuaries in this study were divided into two types, namely, the minor (<150 m3s-1) and major 125 

(>150 m3 s-1) estuaries.  126 

2.2 Sample collection 127 

 Estuaries are known to be biologically active spots in the aquatic ecosystem and therefore 128 

significant modification of DIC (through autotrophic primary production or heterotrophic 129 

respiration) is possible.  Hence, samples were collected from mouth of the estuaries rather than 130 

from mid or upstream rivers for reliable export fluxes of DIC to the coastal ocean. Further, to 131 

minimize the inter-annual variability in DIC concentrations, sampling was conducted in 132 

discharge period of two years, i.e., 2011 and 2014 and the mean DIC concentration in each 133 

estuary was used for export flux estimations.  Each estuary was sampled at 3 to 5 locations 134 

between the upstream river (near zero salinity) and mouth of the estuary in order to minimize the 135 

spatial variability in DIC concentrations, and the mean concentrations were used for flux 136 

estimates.  Further, samples were collected in mid-stream of the estuary using a local 137 

mechanized boat to avoid the contamination from banks.   138 

 In-situ measurements and sample collection was done in the 27 estuaries (Fig. 1) during 139 

the SW monsoon season of the years, 2011 and 2014. Surface water samples at each location 140 

were collected for phytoplankton biomass (Chl-a), DIC and dissolved oxygen (DO).  Samples 141 
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for DIC were collected in air-tight crimp-top glass bottles and added poison (mercuric chloride) 142 

to arrest the biological activity.  DO analysis was carried out at a temporary shore laboratory set 143 

up for sample processing after the completion of sampling on each day.  Water samples were 144 

filtered through GF/F (nominal pore size: 0.7µm) under moderate vacuum and stored in liquid 145 

nitrogen for Chl-a analysis at the NIO.  146 

3. Methods 147 

 Temperature and salinity at the sampling locations were measured using a CTD system 148 

(Sea Bird Electronics, SBE 19 plus, United States of America). Concentrations of DO were 149 

determined by Winkler’s method (Carritt and Carpenter, 1966) using an auto titrator (Metrohm, 150 

Switzerland) with potentiometric end point detection.  The analytical precision of the method 151 

was ±0.07% (RSD). DIC concentrations in water samples were measured at our Institute 152 

laboratory using Coulometer (UIC Inc., USA) connected to an automatic sub-sampling system. 153 

Based on the repeated analysis of samples and standards, the precision of the method was ±1.8 154 

µmol l-1.  The certified reference materials (CRM) supplied by Dr. A.G. Dickson, Scripts 155 

Institute of Oceanography, USA and internal standards were used to test the accuracy of our DIC 156 

measurements and it was found to be within ± 0.2 to 0.3%.  Chlorophyll-a (Chl-a) on the filter 157 

was extracted into di-methyl formamide (DMF) and measured the extract fluorometrically using 158 

a spectrofluorophotometer (Varian Eclipse, Varian Electronics., UK) following Suzuki and 159 

Ishimaru (1990).  Annual mean discharge data of rivers was taken from Meybeck and Ragu 160 

(1995, 1996), Central Water Commission, New Delhi (2006, 2012) and Kumar et al. (2005). Soil 161 

organic carbon data was taken from Kishwan et al. (2009) and rainfall data was obtained from 162 

Soman and Kumar (1990). Dissolved organic carbon (DOC) data for the Indian estuaries was 163 

taken from Krishna et al. (2015). 164 
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 Total export flux of DIC from each river was estimated by multiplying the mean 165 

concentrations of DIC in an estuary with the mean annual discharge.  Spatial variability in DIC 166 

concentrations in estuaries was minimized to a large extent by collecting samples from head to 167 

mouth of the estuary while the inter-annual variability by collecting samples during discharge 168 

periods of two years. However, variability in DIC concentrations within the discharge period 169 

results in some uncertainties in our estimations of DIC export fluxes. Time series measurements 170 

in the Godavari estuary (our unpublished results) revealed that the variability in DIC 171 

concentrations within the discharge period is up to 10%.  Therefore, the error associated with our 172 

DIC flux estimates can be about ±10%.  DIC fluxes normalized by catchment area (yield) were 173 

calculated by dividing the total DIC export flux of the river by its catchment area.    174 

3. Results 175 

Prevailing hydrographic conditions in Indian estuaries during the sample collection were given in 176 

detail elsewhere (Sarma et al., 2012, 2014; Krishna et al., 2015).  Briefly, mentioned here for 177 

ready reference.  Surface water temperature was found to be higher in estuaries located on the 178 

east coast (mean 30.86±1.23oC) than the west coast (27.32±1.49oC) of India.  Salinity varied 179 

broadly from near zero (0.06) to 28.78 during the study period.  Relatively higher salinities (>20) 180 

were recorded by the medium estuaries, which receives relatively lower freshwater discharge 181 

from the upstream river, for example, Nagavali (28.78), Vaigai (24.63) and Rushikulya (20.70).  182 

Dissolved oxygen saturation varied from as low as 62.6% to as high as 105%, with a mean 183 

saturation of 89.9±11.4% in the estuaries sampled. Chlorophyll-a (Chl-a) concentrations varied 184 

broadly from 0.8 to 10.7 mg m-3, with relatively higher mean concentrations in the SE (4.7 mg 185 

m-3) followed by the SW (3.0 mg m-3) estuaries. However, relatively low Chl-a was observed in 186 

the medium (2.6±1.3 mg m-3) than in the major estuaries (3.2±2.1 mg m-3).  187 
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3.1 Concentrations and 13C of DIC (δ13CDIC) in the Indian monsoonal estuaries 188 

DIC concentrations in Indian estuaries widely varied from 3.4 (Bharathappuzha) to 189 

44.1mg l-1 (Vellar), with a significant spatial variability (Fig. 2).  More than five times higher 190 

mean concentrations were observed in the SE (36.3±6.3 mg l-1) and NW estuaries (30.3±8.9 mg 191 

l-1) than in the SW estuaries (6.6±2.1 mg l-1), and intermediate concentrations were found in the 192 

NE estuaries (19.5±6.2 mg l-1). DIC concentrations were found to be similar (homoscedastic 193 

Student’s t-test; p=0.76) in the major (22.7±13.6 mg l-1) and medium (21.1±13.2 mg l-1) 194 

estuaries.  The δ13CDIC varied from -13.0 to 2.5‰, with a significant spatial variability (Fig. 3) in 195 

the estuaries sampled. Relatively depleted values were observed in the west flowing estuaries of 196 

NW (-11.1±2.3‰) and SW (-7.4±1.9‰) than the east flowing estuaries of NE (-3.5±2.8‰) and 197 

SE (-2.7±5.2‰) regions of India.  198 

Annual export flux of DIC from the individual estuaries to coastal ocean varied broadly 199 

from 0.009 Tg (Chalakudi) to as high as 2.32 Tg (Krishna).  Annually, the NE estuaries export 200 

higher DIC flux of 4.21 Tg followed by the SE (3.50 Tg) and NW estuaries (2.38 Tg).  Whereas, 201 

the SW estuaries recorded the lowest export flux of 0.30 Tg which is an order of magnitude 202 

lower than the export flux by the NE and SE estuaries (Fig. 2). The Indian monsoonal estuaries 203 

together export about 10.4 Tg yr-1 of DIC to the northern Indian Ocean, of which 7.7 Tg (74.2%) 204 

enters into the Bay of Bengal and the remaining into the Arabian Sea (2.7 Tg).  The estuaries, 205 

Krishna (2.32 Tg), Godavari (1.45 Tg) and Haldia (1.16 Tg) together responsible for the 206 

transport of 64% of total riverine DIC export to the Bay of Bengal by the Indian monsoonal 207 

rivers. The yield of DIC ranged from 2.7 (Bharathappuzha) to 21.6 g m-2 yr-1 (Mandovi), 208 

excluding the exceptionally high yield of 113.4 g m-2 yr-1 from Haldia estuary. The west flowing 209 

rivers to the Arabian Sea are characterized by relatively higher yield of DIC (mean 10.4±5.6 g m-210 
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2 yr-1) than the east flowing rivers to the Bay of Bengal (7.3±4.6 g m-2 yr-1). Among the estuaries 211 

sampled, the SW and SE estuaries recorded higher (10.8±6.6g m-2 yr-1) and lower (5.8±2.3g m-2 212 

yr-1) yields of DIC respectively. The NW (9.5±4.0 g m-2 yr-1) and NE (8.6±5.7g m-2 yr-1) 213 

estuaries recorded intermediate values. 214 

4. Discussion 215 

 Hydrographic characteristics of the Indian monsoonal estuaries during the study 216 

(discharge) period were described elsewhere (Sarma et al., 2012, 2014; Krishna et al., 2015). 217 

Strong flow from the upstream rivers due to the SW monsoon-induced precipitation over the 218 

catchment makes most of the estuaries less saline (near zero), except the minor estuaries, 219 

Nagavali, Vaigai and Rushikulya, during the study period. No vertical salinity stratification was 220 

observed in estuaries during the study period, consistent with earlier observations in the Indian 221 

estuaries during discharge period (Vijit et al., 2009; Sridevi et al., 2015), unlike the European 222 

and American estuaries (Christopher et al., 2002).  223 

4.1 Variability of DIC concentrations in the Indian monsoonal estuaries 224 

Mean DIC concentration found in this study (21.9±13.2 mg l-1; range: 3.4 to 44.1 mg l-1) 225 

is similar to those observed earlier in the Indian estuaries, for example, Ganga-Brahmaputra (23 226 

mg l-1; Singh et al., 2005), Hooghly (21.8 mg l-1; Samanta et al., 2015) and Mahanadi (15.0; 227 

Pattanaik et al., 2017) and elsewhere in the world, for instance, York river estuary (6-21 mg l-1; 228 

Raymond and Bauer, 2000), Yangtze river (28 mg l-1; Cai et al., 2008), British rivers (median 4-229 

43 mg l-1; Jarvie et al., 2017), Seri, central Japan (17.6-21.9 mg l-1; Ishikawa et al., 2015), the 230 

Red river, Vietnam (9.1-29.9 mg l-1; Quynh et al., 2016) and Xi river, southwest China (18-231 

45.6mg l-1, Zou, 2016).  However, mean DIC concentrations in the Indian estuaries (21.9±13.2 232 
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mg l-1) are higher than the global mean of 10.3 mg l-1 (Meybeck and Vorosmarty, 1999) and the 233 

Asian rivers (12.7 mg l-1) in the tropical region (30oN-30oS; Huang et al., 2012), but lower than 234 

the rivers draining into the Gulf of Trieste (N Adriatic) (37-66 mg l-1; Tamse et al., 2014). 235 

Among the estuaries sampled along the Indian coast, the SW estuaries are characterized 236 

by significantly lower mean concentrations of DIC (6.6±2.1 mg l-1) than the SE (36.3±6.3 mg l-237 

1), NE (19.5±6.2 mg l-1) and NW (30.3±8.9 mg l-1) estuaries.  DIC concentrations in estuaries are 238 

mainly governed by the hydrological (precipitation and runoff), lithological (type and dominance 239 

of rocks and soils) and environmental (temperature, climate and vegetation) conditions, and 240 

anthropogenic activities (deforestation and land use change) in the catchment, and in-stream 241 

physical and biological processes such as exchange with ground water (Finlay, 2003; Shin et al., 242 

2011; Maher et al., 2013) and atmospheric CO2, autotrophic production and heterotrophic 243 

decomposition of organic matter (McConnaughey et al., 1994; Abril et al., 2003; Finlay and 244 

Kendall, 2007).  Since many of these processes are largely dependent on the size of the river and 245 

its catchment, the lower DIC concentrations in the SW estuaries of this study could be due to the 246 

size of the rivers.  This is because, the SW rivers are small both in terms of discharge (46 km3 yr-247 

1) and catchment area (total catchment area: 0.02 M km2) than the SE (102 km3 yr-1 and 0.45 M 248 

km2, respectively), NE (276 km3 yr-1and 0.53 M km2) and NW (75 km3 yr-1 and 0.21 M km2) 249 

rivers.  However, DIC concentrations showed significant positive relationship with catchment 250 

area (r2=0.75; p<0.001; Fig. 4a) and negative relationship with volume of discharge (r2=0.57; 251 

p<0.001; Fig. 4b) only in the medium estuaries (discharge: <150 m3s-1), suggesting that an area 252 

of catchment and magnitude of discharge controls DIC concentrations largely in the medium 253 

estuaries rather than the major estuaries.    254 
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Indian monsoonal estuaries were reported as a source of CO2 to the atmosphere during 255 

discharge period (Sarma et al., 2001, 2011, 2012; Gupta et al., 2009; Bhavya et al., 2016) due to 256 

the microbial decomposition of terrestrial organic matter brought by the rivers.  This suggests 257 

that the DIC input from dissolution of atmospheric CO2 in estuaries can be ruled out, however, 258 

heterotrophic decomposition of organic matter adds significant amount of DIC to the Indian 259 

estuaries during discharge period. A fairly good positive correlation between DIC and DOC 260 

concentrations (r2=0.34, p<0.01), except few medium estuaries, suggests that DIC addition 261 

through microbial degradation of particulate organic matter is significant in the Indian estuaries. 262 

Except the NW estuaries, which recorded relatively depleted 13C of DIC (13CDIC), the positive 263 

correlation between 13CDIC and DOC concentrations (r2=0.35, p<0.01), as was observed 264 

elsewhere (Xi river, Zou et al., 2016), confirms that oxidation of organic matter is one of the 265 

main DIC sources in the Indian estuaries.  On the other hand, autotrophic production removes 266 

DIC as it converts DIC to organic carbon.  Significant negative correlation between chlorophyll-267 

a and DIC concentrations (r2=0.47, p<0.01), except few SE estuaries where elevated 268 

phytoplankton biomass (Chl-a: >5 mg m-3) was recorded, suggesting that autotrophic removal of 269 

DIC is also significant in the Indian monsoonal estuaries during the study period.  Significance 270 

of DIC addition by heterotrophic decomposition and removal by autotrophic production in the 271 

Indian estuaries was confirmed by a fairly good positive correlation between 13CDIC and 272 

dissolved oxygen saturation (r2=0.49, p<0.01), (depleted 13CDIC values at low % of DO 273 

saturation), except NW estuaries, which recorded depleted 13CDIC (<-10.0‰). This is because 274 

the microbial decomposition of organic matter results in depleted 13CDIC due to preferential 275 

release of 12C over 13C in to DIC pool while removal of DIC by autotrophic production enriches 276 

the residual DIC due to preferential uptake of 12C over 13C during photosynthesis reaction.  277 
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As found in many estuaries over the world, submarine ground water exchange strongly 278 

influences DIC concentrations in Indian estuaries, for example, Rengarajan and Sarma (2015) 279 

found 3 to 4 times higher DIC concentrations in the ground water compared the estuarine waters 280 

of the Godavari and estimated that submarine ground water discharge contributes up to 52% of 281 

DIC concentrations in the Godavari estuarine system.  The measured DIC concentrations in 282 

ground waters along the entire Indian coast (Dr. BSK Kumar, personal communication) showed 283 

strong spatial variability with relatively lower concentrations in the SW (mean 32±19 mg l-1) 284 

than the SE (106±56), NE (92±31) and NW (84±54 mg l-1) regions of India during discharge 285 

period.  Though the DIC concentrations in ground waters were higher by about 3 to 5 times than 286 

the concentrations found in the Indian estuaries, however, exchange of ground water with 287 

relatively low DIC concentrations in the SW region could have, at least partly, caused the lower 288 

DIC concentrations in the SW estuaries. 289 

Spatial distribution of bedrock and soils over the Indian subcontinent shows that 290 

Narmada and Tapti rivers and upper reaches of Godavari and Krishna rivers drain the igneous 291 

rocks (Deccan traps) while the other rivers flow through the metamorphic rocks (Pre-Cambrian), 292 

the predominant rock type in south India.  However, Haldia and lower reaches of the SE rivers 293 

drain the sedimentary rocks (Geological Survey of India, https://www.gsi.gov.in). Although, the 294 

chemical weathering rates were reported to be higher for Deccan Trap basalts (Das et al., 2005; 295 

Singh et al., 2005), however, higher DIC concentrations were also found in estuaries draining the 296 

metamorphic rocks, suggesting that strong influence of factors other than the bedrocks in the 297 

catchment.  Spatial distribution of soils shows that lateritic soils, which are poor in lime and 298 

silicate, occupied the catchment of the SW rivers. Chemical weathering rates are relatively lower 299 

in the lateritic than the non-lateritic soils and the consumption of atmospheric/soil CO2 through 300 
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silicate weathering is lower by ~2 times in the former than the latter (Boeglin and Probst, 1998).  301 

Though the upper reaches of the east flowing rivers (NE and SE) drain the lime-poor red and 302 

yellow soils, however, they are dominated by the lime-rich alluvial soils in their lower reaches.  303 

Upper reaches of Krishna and Godavari also drain the lime-rich black soils. The dominance of 304 

lateritic soils, which are relatively less susceptible to chemical weathering than the non-lateritic 305 

soils, over the catchments of the SW rivers could have, at least in part, lowered the DIC 306 

concentrations in SW estuaries during the study period. 307 

The SW region of India receives highest amount of rainfall during the SW monsoon 308 

(2500±500mm) than the SE (400±50), NE (1000±200) and NW (750±250mm) regions of India 309 

(Soman and Kumar, 1990).  Though the intense rainfall in the SW region is expected to cause 310 

higher weathering rates and therefore higher DIC (e.g., Gupta et al., 2011), the observed lower 311 

DIC concentrations in the SW estuaries could be due to the dilution.  The catchment area 312 

normalized volume of discharge was found to be higher in the SW estuaries (1.71 m3 m-2) than in 313 

the SE (0.17), NE (0.6) and NW (0.32m3 m-2) estuaries, suggesting that significant dilution of 314 

DIC concentrations in the SW estuaries.  A strong negative correlation between precipitation in 315 

the catchment and DIC concentration in estuaries (r2= 0.89, p<0.001; Fig. 5) confirms that DIC 316 

concentration in Indian estuaries are rather controlled by the intensity of precipitation over the 317 

catchment. 318 

4.2 δ13C of DIC in the Indian monsoonal estuaries 319 

 The stable isotopic composition of DIC (δ13CDIC) is a well-established and widely used 320 

tracer to identify the major sources of DIC in rivers (e.g. Singh et al., 2005; Tamooh et al., 2013; 321 

Samanta et al., 2015; Zou, 2016) because each of the DIC sources have a distinct δ13CDIC ratios 322 

(Deines et al., 1974).  DIC originated by dissolution of atmospheric CO2 is about -7 to -8‰ 323 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-4
Manuscript under review for journal Biogeosciences
Discussion started: 9 January 2018
c© Author(s) 2018. CC BY 4.0 License.



15 
 

(Coplen et al., 2002) whereas it is about -26 to -27‰ if DIC is derived from oxidation of organic 324 

matter produced by C3 plants (O’Leary, 1988). The δ13C of DIC generated by soil CO2 dissolved 325 

carbonic acid weathering of silicates is about -17 to -21‰ (Solomon and Cerling, 1987) while it 326 

is close to -9‰ for carbonate rocks because half of the carbon comes from carbonate rocks (0‰, 327 

Land, 1980) during weathering.  Whereas, the weathering of carbonate and silicate minerals 328 

yield δ13CDIC values -7 to -8‰ and -3 to -4‰, respectively, if the carbonic acid formed by the 329 

dissolution of atmospheric CO2. Although, DIC derived from different sources have distinctly 330 

different δ13CDIC values, however, the interpretation the δ13CDIC values for identification of its 331 

sources is still challenging (Amiotte-Suchet et al., 1999; Campeau et al., 2017) due to the 332 

isotopic fractionations associated with complex mixture of sources and processes such as 333 

photosynthesis (O’Leary, 1988; Finlay, 2004; Parker et al., 2005, 2010), respiration (Finlay, 334 

2003; Waldron et al., 2007), DOC photo-oxidation (Opsahl and Zepp, 2001; Vahatalo and 335 

Wetzel, 2008), anaerobic metabolism (Waldron et al., 1999; Maher et al., 2015) and equilibration 336 

with atmospheric CO2.  337 

 The range of δ13CDIC found in this study (-13.0 to 2.5‰) was similar to those reported 338 

earlier in various rivers, for example, Brahmaputra (Singh et al., 2005), Rhine (Buhl et al., 1991), 339 

Ottawa (Telmer et al., 1999), St. Lawrence (Yang et al., 1996), Nanpan and Beipan rivers, 340 

southwest China (Zou, 2016) and Tana river, Kenya (Tamooh et al., 2013). The range of δ13CDIC 341 

in this study indicates a variety of sources, including silicate and carbonate weathering and 342 

marine waters, contributes DIC to the Indian monsoonal estuaries during the study period.  343 

Relatively depleted δ13CDIC in the west flowing river estuaries of NW (mean -11.1±2.3‰) and 344 

SW (mean: -7.4±1.9‰) regions suggest that DIC is contributed from silicate and carbonate 345 

weathering by the carbonic acid, produced from the dissolution of both soil CO2 and atmospheric 346 
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CO2. Zou (2016) found the δ13CDIC values in the range of -13.9 to -8.1 ‰ in the Nanpan and 347 

Beipan rivers of SW China and were attributed to dominant contribution of DIC from weathering 348 

of carbonate minerals.  Relatively enriched δ13CDIC in the east flowing river estuaries of NE (-6.5 349 

to 0.7; mean: -3.5±2.8‰) and SE (-7.9 to 2.5‰; -2.7±5.2‰) indicates that major contribution of 350 

DIC is from chemical weathering of carbonate rocks by atmospheric CO2 dissolved carbonic 351 

acid or acid from non-carbon sources (Li et al., 2008). Weathering of carbonate minerals by acid 352 

sources other than carbonic acid causes enrichment compared to weathering by carbonic acid due 353 

to lack of contribution from δ13C-depleted  carbonic acid of soil CO2 (-17 to -21‰) or 354 

atmospheric CO2 (-7 to -8‰) origin to the δ13C-enriched carbonate rocks (0‰, Land 1980).   355 

In addition to the sources, hydrological and biological processes also influence the 356 

δ13CDIC in streams/rivers. For example, heavy precipitation in the SW region (2500±500mm) 357 

than the other regions tends to cause depletion in δ13CDIC values due to shorter residence time of 358 

soil water (Amiotte-Suchet et al., 1999) while CO2 out gassing causes enrichment due to 359 

accumulation of 13C during diffusive efflux (Clark and Fritz, 1997) in stored water bodies.  Many 360 

of the east flowing rivers are major and are dammed at many locations (e.g. Godavari, Krishna 361 

and Cauvery) for domestic, industrial and irrigation purposes. CO2 out gassing due to 362 

heterotrophic decomposition of organic matter and autotrophic production significantly alters the 363 

δ13CDIC signatures in reservoirs (Shin et al., 2001). Further, equilibrium with atmospheric CO2 in 364 

the reservoirs due to no/lean flow leads to enrichment in the δ13CDIC values (Brunet et al., 2005; 365 

Bouvillion et al., 2009; Zeng et al., 2011; Tamooh et al., 2013).  Hence, relatively enriched 366 

δ13CDIC in the NE and SE estuaries could also be due to the storage of water in reservoirs/dams. 367 

A significant positive correlation between DIC concentrations and δ13CDIC (r
2=0.77; p<0.001; 368 

Fig. 7), excluding the positive values, indicate that significant contribution of DIC from 369 
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oxidation of particulate organic carbon in dams/reservoirs or stored water bodies. Shin et al. 370 

(2011) attributed the stream δ13CDIC values of -6.9±1.6‰ and -7.8±1.5‰ in silicate and 371 

carbonate dominated catchments, respectively, in tributaries of the Han River, South Korea to 372 

CO2 out gassing.  Positive δ13CDIC values (>0‰) were observed only in Rushikulya (0.1‰), 373 

Nagavali (0.7‰) and Vaigai (2.5‰) in which relatively higher salinities (>20) were found 374 

during the study period.  This is concurrent with earlier observations in the Indian estuaries, 375 

Hooghly (Samanta et al., 2015) and Cochin (Bhavya et al., 2016) where relatively enriched 376 

δ13CDIC were found at higher salinities. A strong positive correlation was found between δ13CDIC 377 

and salinity (Fig. 6; r2=0.71, p<0.001), suggesting that δ13CDIC values in the Indian estuaries are 378 

influenced by the intrusion of marine waters (δ13CDIC: -1 to 2‰).   379 

4.3 Total DIC export by the Indian monsoonal rivers to the north Indian Ocean 380 

Indian monsoonal rivers annually export ~10.4 Tg of DIC to the north Indian Ocean. 381 

Nearly three fourth of this amount (7.7 Tg) reaches to the Bay of Bengal while the remaining 382 

into the Arabian Sea. It is mainly attributed to the magnitude of discharge because the Bay of 383 

Bengal annually receives 378 km3 of freshwater from the catchment area of about 0.96 M km-2, 384 

whereas the Arabian Sea receives only 122 km3 of freshwater from the catchment area of only 385 

0.23 M km2.  Although the increase in volume of discharge dilutes the DIC flux from rivers 386 

(Jarvie et al., 1997; Shanley et al., 2002), bicarbonate fluxes to the Gulf of Mexico were reported 387 

to increase with the volume of discharge from the Mississippi river (Raymond and Oh, 2007) due 388 

to small dilution factor. 389 

The total DIC export by the Indian monsoonal estuaries (10.4 Tg yr-1) is only 2.5% of the 390 

total DIC export by the world major rivers (400 Tg yr-1), and 9.4% of the export by the Asian 391 
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rivers (111Tg yr-1; Huang et al., 2012).  The DIC export from the Indian estuaries is far less than 392 

the DIC export by the American (61.4 Tg yr-1) and African (17.7 Tg yr-1) rivers and major rivers 393 

draining to the tropical Atlantic from South America and Africa (53Tg yr-1, Araujo et al. 2014).  394 

It is mainly due to the fact that the volume of discharge from the Indian monsoonal rivers is very 395 

low (~500 km3) compared to the American (11,799 km3) and African (3,786 km3) rivers.  396 

However, the Indian monsoonal rivers are exporting DIC disproportionately to the north Indian 397 

Ocean because they account for only 1.3% of the global river discharge but export 2.5% of the 398 

global riverine DIC to the oceans.  Disproportionate DIC fluxes from the tropical regions are 399 

mainly attributed to the favourable climatic conditions, lithology and land use cover (Huang et 400 

al., 2012) in this region. Relatively higher export fluxes from the Indian rivers could be due to 401 

higher weathering rates of silicate and carbonate minerals in the drainage basins of the Indian 402 

rivers (Das et al., 2005; Gurumurty et al., 2012; Pattanaik et al., 2013) 403 

Krishna et al. (2015) reported that Indian monsoonal estuaries export 2.32 Tg yr-1 of 404 

dissolved organic carbon (DOC) to the north Indian Ocean. When combined the total fluvial 405 

dissolved carbon flux would be 12.71 Tg yr-1.  This indicate that the total fluvial dissolved 406 

carbon export to the north Indian Ocean by the Indian monsoonal estuaries is predominantly 407 

contributed by DIC (~81%) than DOC, consistent with earlier reports elsewhere in the world, for 408 

example, the British rivers (80%, Jarvie et al., 2017). Since the catchment area of the Indian 409 

monsoonal rivers ranged widely from as low as 0.001 M km2 to as high as 0.313 M km2, the 410 

export fluxes of DIC were normalized with the catchment area of river to obtain DIC yield from 411 

each river in order to examine various factors controlling the lateral DIC export to the north 412 

Indian Ocean. 413 

4.4 Yield of DIC from the Indian monsoonal rivers  414 
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 The yield of DIC found in this study (mean 8.7±5.2 g m-2 yr-1) is similar those found 415 

earlier in rivers from the tropical region (30oN – 30oS) of the Asian continent (9.79 g m-2 yr-1; 416 

Huang et al., 2012), but significantly higher than the American (3.33 g m-2 yr-1) and African 417 

(0.63 g m-2 yr-1) continents of this tropical region (Huang et al., 2012). The yield of DIC from 418 

river catchment were reported to be controlled by the hydrological (precipitation, runoff and 419 

groundwater exchange) and environmental (temperature, type and dominance of soils, soil 420 

organic carbon, natural vegetation and forest cover) conditions and anthropogenic activities (land 421 

use change and deforestation) in the catchment (Raymond et al., 2008; Huang et al., 2012).  422 

Although the SW estuaries annually export relatively less DIC to the north Indian Ocean (0.30 423 

Tg) due to their lower volume of discharge (46 km3 yr-1) from relatively smaller catchment area 424 

(0.02 M km2) than the SE (3.50 Tg, 102 km3 yr-1 and 0.43 M km2 respectively), NE (4.21 Tg, 276 425 

and 0.53) and NW (2.38 Tg, 75 km3 yr-1 and 0.21 M km2) estuaries, strikingly, the higher yield of 426 

DIC was found in the former (10.8±6.6 g m-2 yr-1) than the latter (5.8±2.3, 8.6±5.7 and 9.5±3.9 g 427 

m-2 yr-1, respectively). This suggests that strong control of catchment and/or in-stream processes 428 

on yield of DIC from the monsoonal rivers. However, DIC yield showed significant positive 429 

correlation with the volume of discharge (r2=0.66, p<0.001) in medium estuaries and no such 430 

relationship was found in the major estuaries. Significant negative relationships were observed 431 

between DIC yield and catchment area in the medium (r2=0.52, p<0.001) and major estuaries 432 

(r2=0.49, p<0.001).  This suggests that high precipitation over small catchments increases the 433 

DIC yield from the Indian estuaries because the dense precipitation increases the scouring of 434 

DIC from soils and rocks in their catchment. A strong linear relationship between the yield of 435 

DIC and the intensity of precipitation (r2=0.64, p<0.001 Fig. 8a) confirms that dense 436 

precipitation increases the export yield of DIC.  This could be one the reasons for the observed 437 
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higher yield of DIC in the SW estuaries which receives high precipitation (2500±500mm) over 438 

the small catchment area (0.02 M km2). 439 

Ground water exchange do not appears to be controlling DIC yield from the Indian 440 

monsoonal estuaries because the groundwater DIC concentrations were lower in the SW (32±19 441 

mg l-1) than the other regions SE (106±56), NE (92±31) and NW (84±54mg l-1).  Existing natural 442 

vegetation of tropical moist deciduous and tropical wet evergreen and semi evergreen forests in 443 

the SW region also could have increased DIC yield from the SW estuaries compared to the other 444 

estuaries as this vegetation favors the export fluxes of DIC. The drainage basins of the Indian 445 

monsoonal estuaries are largely under the tropical dry and wet climate except the SW rivers, 446 

Narmada and Tapti. The rivers Narmada and Tapti are under the arid and semiarid climate while 447 

the SW rivers are under the tropical wet climate which was also reported to facilitate the riverine 448 

export of material from drainage basin to the coastal ocean.  449 

Catchments of the SW rivers are largely occupied by the cation deficient lateritic soils 450 

and therefore precipitation of carbonate minerals in soils is poor. As a result, the soil inorganic 451 

carbon content in surface (100cm) soils of the catchment of SW rivers was lower than in 452 

catchments of the other monsoonal rivers studied (Sreenivas et al., 2016).  On the other hand, the 453 

authors (Sreenivas et al., 2016) and Krishwan et al. (2009) found that the soil organic carbon was 454 

higher in the former than the latter. The relationship between soil inorganic and organic carbon is 455 

primarily dependent on the soil characteristics in the catchment. For example, Guo et al. (2016) 456 

demonstrated that increase in the soil organic carbon content enhanced the soil inorganic carbon 457 

in the cropland of upper Yellow river delta, China. A strong positive relationship between soil 458 

organic and inorganic carbon was also found in the Yanqi river basin, northwest China (Wang et 459 

al., 2015), and soils in the America (Stevenson et al., 2005) and Canada (Landi et al., 2003).  On 460 
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the other hand, a negative relationship was found between soil organic and inorganic carbon in 461 

the North China Plain (Huang et al., 2006) and west Loess Plateau (Zeng et al., 2008). The 462 

negative relationship is mainly due to the higher production of CO2 by decomposition of soil 463 

organic carbon and root respiration resulting in the formation of acidic conditions that lead to 464 

dissolution of soil carbonates. The higher soil organic carbon in the catchment of the SW than in 465 

catchment of the SE, NE and NW rivers (Kishwan et al., 2009; Sreenivas et al., 2016) therefore, 466 

produces more CO2 through microbial decomposition and causes  dissolution of  soil carbonates 467 

leading to the higher yield of DIC from the SW estuaries.  A significant linear correlation 468 

between soil organic carbon content and DIC yield in this study (r2=0.65, p<0.001; Fig. 8b) 469 

suggests that strong influence of soil organic carbon content in the catchment on DIC yield from 470 

the Indian monsoonal rivers.  However, basin scale studies are required for comprehensive 471 

understanding of the influence of environmental and anthropogenic factors on DIC export fluxes 472 

from the Indian monsoonal rivers. 473 

5. Summary 474 

In order to examine the variability of dissolved inorganic carbon (DIC) concentrations 475 

and to identify its major sources in the Indian monsoonal estuaries, and to estimate the riverine 476 

export fluxes of DIC to the north Indian Ocean, we sampled a total of 27 major and medium 477 

estuaries along the Indian coast during wet period.  An order of magnitude variability was found 478 

in DIC concentrations among the estuaries sampled (3.4 - 44.1mg l-1), with a lower mean 479 

concentrations of 6.6±2.1 mg l-1 in estuaries located in the SW region of India.   It is attributed to 480 

significant variability in the size of rivers, precipitation pattern and lithology in their catchments.  481 

Magnitude of discharge, catchment area and in-stream processes are appears to be important 482 

factors for medium estuaries rather than major estuaries in controlling the concentration and 483 
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yield of DIC, probably due to a significant variability in lithology and hydro-geological and 484 

environmental conditions in the catchments.  Indian monsoonal estuaries annually export ~10.4 485 

Tg of DIC to the north Indian Ocean, of which 7.7 Tg enters in to the Bay of Bengal while the 486 

Arabian Sea receives only 2.7 Tg.  It is mainly attributed to the volume of river discharge as 487 

former receives ~378 km3 yr-1 while the latter receives only 122 km3 yr-1of freshwater from the 488 

Indian monsoonal rivers. The range of δ13CDIC found in this study suggests that DIC is largely 489 

contributed from weathering of silicate and carbonate minerals by carbonic acid formed by 490 

dissolution of both soil and atmospheric CO2.  However, relatively enriched δ13CDIC in the east-491 

flowing river estuaries indicated the storage of water in dams/reservoirs and intrusion of marine 492 

waters. Dense rainfall (2500±500mm) and higher soil organic carbon content (101.4 g ha-1) in 493 

the catchment of SW rivers than in the catchment of the other rivers resulted in higher yield of 494 

DIC from the former than the latter.   495 
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Figure 1: Map showing the study region. Estuaries of the rivers sampled in this study were 936 
indicated by solid black line. 937 
 938 
Figure 2: Concentration (mg l-1), export flux (Tg yr-1) and yield (g m-2 yr-1) of dissolved 939 
inorganic carbon (DIC) in the Indian monsoonal estuaries.  Estuaries geographically located in 940 
the northeastern (NE), southeastern (SE), southwestern (SW) and northwestern (NW) regions of 941 
India were also shown.  Estuaries draining into the Bay of Bengal and the Arabian Sea were also 942 
provided 943 
 944 
Figure 3: Spatial variability in stable carbon isotopes of dissolved inorganic carbon (δ13CDIC, ‰) 945 
in the Indian monsoonal estuaries during discharge period. 946 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-4
Manuscript under review for journal Biogeosciences
Discussion started: 9 January 2018
c© Author(s) 2018. CC BY 4.0 License.



33 
 

Figure 4: (a) Positive correlation between dissolved inorganic carbon (DIC) concentration and 947 
catchment area, and (b) negative correlation between DIC concentrations and annual mean 948 
discharge (km3) of the minor rivers. 949 
 950 
Figure 5: Inverse correlation between mean dissolved inorganic carbon concentration in 951 
estuaries (DIC, mg l-1) and annual mean rainfall (mm) in catchments of the rivers in the NE, NW, 952 
SE and SW regions of India. 953 
 954 
Figure 6: Significant positive correlation between stable carbon isotopes of dissolved inorganic 955 
carbon (δ13CDIC, ‰) and salinity in the Indian monsoonal estuaries during the study period. 956 

Figure 7: Significant positive correlation between stable carbon isotopes of dissolved inorganic 957 
carbon (δ13CDIC, ‰) and concentrations of DIC in the Indian monsoonal estuaries (filled 958 
diamonds), SW estuaries (filled squares) and high saline estuaries (hollow triangles) during the 959 
study period. 960 
 961 
Figure 8: Relationship of dissolved inorganic carbon (DIC) yield (g m-2 yr-1) with that of (a) 962 
rainfall (mm) and (b) soil organic carbon (kg ha-1) in the catchment area of the NE, NW, SE and 963 
SW rivers 964 
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